Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu concentration profiles. The model considers that: (1) electrical potential in the soil is constant with the time; (2) the effect of temperature is negligible; and (3) dissolution of soil constituents is negligible. The predicted pH profiles and transport of copper in sandy loam soil during electrokinetic remediation were found to reasonably agree with the bench-scale electro-kinetic
experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electro-kinetic remediation.
The effected of the long transmission line (TL) between the actuator and the hydraulic control valve sometimes essentials. The study is concerned with modeling the TL which carries the oil from the electro-hydraulic servovalve to the actuator. The pressure value inside the TL has been controlled by the electro-hydraulic servovalve as a voltage supplied to the servovalve amplifier. The flow rate through the TL has been simulated by using the lumped π element electrical analogy method for laminar flow. The control voltage supplied to servovalve can be achieved by the direct using of the voltage function generator or indirect C++ program connected to the DAP-view program built in the DAP-card data acqu
... Show MoreAn increasing number of emerging contaminants have been detected in surface waters, sediment, soil and ground water in different locations in the world, which is a new environmental challenges need an actual concern for international scientific and legislative communities.
The nonprescription and huge used pharmaceuticals ibuprofen and diclofenac sodium will be focused in this study. New adsorbent developed using cheap inorganic clay material (bentonite) and organic polymer polyureaformaldehyde (PUF), the combination of these two materials gave the surface more roughness with wide active site distribution. Batch adsorption experiment performed to each pharmaceutical individually to determine the optimum separat
... Show MoreIn this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer) and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm), electrical current density (2.67-21.4 mA/cm2), init
... Show MoreThe present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio
... Show MoreAbstract
The methods of the Principal Components and Partial Least Squares can be regard very important methods in the regression analysis, whe
... Show MoreGypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t
The degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show MoreIn Computer-based applications, there is a need for simple, low-cost devices for user authentication. Biometric authentication methods namely keystroke dynamics are being increasingly used to strengthen the commonly knowledge based method (example a password) effectively and cheaply for many types of applications. Due to the semi-independent nature of the typing behavior it is difficult to masquerade, making it useful as a biometric. In this paper, C4.5 approach is used to classify user as authenticated user or impostor by combining unigraph features (namely Dwell time (DT) and flight time (FT)) and digraph features (namely Up-Up Time (UUT) and Down-Down Time (DDT)). The results show that DT enhances the performance of digraph features by i
... Show More