In this work a study and calculation of the normal approach between two bodies, spherical and rough flat surface, had been conducted by the aid of image processing technique. Four kinds of metals of different work hardening index had been used as a surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests.
A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights, centre line average, asperity density and the radius of asperities.
A Gaussian distribution of asperity peak height was assumed in calculating the theoretical value of the normal approach in the elastic and plastic regions and where compared with those obtained experimentally to verify the obtained results.
Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm.
This paper introduces an innovative method for image encryption called "Two-Fold Cryptography," which leverages the Henon map in a dual-layer encryption framework. By applying two distinct encryption processes, this approach offers enhanced security for images. Key parameters generated by the Henon map dynamically shape both stages of encryption, creating a sophisticated and robust security system. The findings reveal that Two-Fold Cryptography provides a notable improvement in image protection, outperforming traditional single-layer encryption techniques.
In this paper, we designed a new efficient stream cipher cryptosystem that depend on a chaotic map to encrypt (decrypt) different types of digital images. The designed encryption system passed all basic efficiency criteria (like Randomness, MSE, PSNR, Histogram Analysis, and Key Space) that were applied to the key extracted from the random generator as well as to the digital images after completing the encryption process.
In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreIn this paper, we introduce a DCT based steganographic method for gray scale images. The embedding approach is designed to reach efficient tradeoff among the three conflicting goals; maximizing the amount of hidden message, minimizing distortion between the cover image and stego-image,and maximizing the robustness of embedding. The main idea of the method is to create a safe embedding area in the middle and high frequency region of the DCT domain using a magnitude modulation technique. The magnitude modulation is applied using uniform quantization with magnitude Adder/Subtractor modules. The conducted test results indicated that the proposed method satisfy high capacity, high preservation of perceptual and statistical properties of the steg
... Show MoreInformation security is a crucial factor when communicating sensitive information between two parties. Steganography is one of the most techniques used for this purpose. This paper aims to enhance the capacity and robustness of hiding information by compressing image data to a small size while maintaining high quality so that the secret information remains invisible and only the sender and recipient can recognize the transmission. Three techniques are employed to conceal color and gray images, the Wavelet Color Process Technique (WCPT), Wavelet Gray Process Technique (WGPT), and Hybrid Gray Process Technique (HGPT). A comparison between the first and second techniques according to quality metrics, Root-Mean-Square Error (RMSE), Compression-
... Show More