lar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Baghdad, Iraq. Experiments were carried out with no load, intermittent and continuous load conditions. Some tests, at no load, were carried out with and without reflectors. The overall system efficiency was found to improve with load conditions by a maximum of 55%. The system employing an 1800 mm evaporator length and 22 mm heat pipe (HP7) showed the best performance by higher water temperatures, overall useful energy gain and efficiency at various load conditions. System performance was predicted theoretically using electrical analogy derived from an energy balance. An agreement of within 14% was obtained between theoretical and experimental values.
Mishrif Formation is the main reservoir in oil-fields (North Rumaila, South Rumaila, Majnoon, Zubair and West Qurna) which located at Basrah southern Iraq. The Inductively coupled plasma-Mass spectrometer (ICP-MS) was used for the water chemistry analysis and Scanning Electron Microprobe (SEM) for the purpose of mineralogy diagnosis. A weak acidic water of salinity six-time greater than seawater plays a role in generating the formation pressure and controlling the fluid flow. The potentiometric subsurface maps were modeled and the direction of super-pressure sites that are of a great importance in the oil exploration were marked to pay attention during future drilling.
Denture cleansing is an essential step that can stop cross‑contamination and adds to the health of the patient, denture durability, and the general quality of life. A disinfection technique must be practical and devoid of damaging effects on the material's properties used to construct the denture base. The main aim of this study is to evaluate the effect of three concentrations of electrolyzed water denture cleanser on heat cure acrylic and polyamide after immersion in electrolyzed water. The evaluation is based on their efficacy on surface hardness, wettability, and color stability compared with one submerged in distilled water as a control group. The method consists of eighty samples of heat-cured acrylic and polyamide material.
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
ولاء طارق حميد, Mustansiriyah Journal of Sports Science, 2021
One of the principle inputs to project economics and all business decisions is a realistic production forecast and a practical and achievable development plan (i.e. waterflood). Particularly this becomes challenging in supergiant oil fields with medium to low lateral connectivity. The main objectives of the Production Forecast and feasibility study for water injection are:
1- Provide an overview of the total expected production profile, expected wells potential/spare capacity, water breakthrough timing and water cut development over time
2- Highlight the requirements to maintain performance, suggest the optimum developmen