Flutter is a phenomenon resulting from the interaction between aerodynamic and structural dynamic forces and may lead to a destructive instability. The aerodynamic forces on an oscillating airfoil combination of two independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Theodorsen functions. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-ection theory relating to the steady case. The mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. The solution is of a simple form and
is expressed by means of an auxiliary parameter K. The use of finite element modeling technique and unsteady aerodynamic modeling with the V-G method for flutter speed prediction was used on a fixed rectangular and tapered wing to determine the flutter speed boundaries. To build the wing the Ansys 5.4 program was used and the extract values were substituted in the Matlab program which is designed to determine the flutter speed and then predicted the various effects on flutter speed. The program gave us approximately identical results to the results of the referred researches. The following wing design parameters were investigated skin shell thickness, material properties, cross section area for beams, and changing altitude. Results of these calculations indicate that structural mode shape variation plays a significant role in the determination of wing flutter boundary.
In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac
... Show MoreGypseous soil covers approximately 30% of Iraqi lands and is widely used in geotechnical and construction engineering as it is. The demand for residential complexes has increased, so one of the significant challenges in studying gypsum soil due to its unique behavior is understanding its interaction with foundations, such as strip and square footing. This is because there is a lack of experiments that provide total displacement diagrams or failure envelopes, which are well-considered for non-problematic soil. The aim is to address a comprehensive understanding of the micromechanical properties of dry, saturated, and treated gypseous sandy soils and to analyze the interaction of strip base with this type of soil using particle image
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
For the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreA theoretical study to design a conformal microstrip antennas was introduced in this work. Conformal microstrip antennas define antennas which can be conformed to a certain shape or to any curved surface. It is used in high-speed trains, aircraft, defense and navigation systems, landing gear and various communications systems, as well as in body wearable. Conformal antennas have some advantages such as a wider-angle coverage compared to flat antennas and low radar cross-sectional (RCS) and they are suitable for using in Radome. The main disadvantage of these antennas is the narrow bandwidth. The FDTD method is extremely useful in simulating complicated structures because it allows for direct integration of Maxwell's equations depending o
... Show MoreThe Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
There are numbers of automatic translation services that internet users can choose to automatically translate a certain text, and Google translate is one of these automatic services that proposes over 51 Languages. The present paper sheds light on the nature of the translation process offered by Google, and analyze the most prominent problems faced when Google translate is used. Direct translation is common with Google Translate and often results in nonsensical literal translations, particularly with long compound sentences. This is due to the fact that Google translation system uses a method based on language pair frequency that does not take into account grammatical rules which, in turn, affects the quality of the translation. The
... Show MoreDeveloping and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep
... Show MoreThe ideas and principles formulated by Ibn-Jamaah in the field of education occupy a central place in the historical origins of education for Muslims. These views and principles have an active role in the educational reorganization that the Islamic world aspires to. These ideas have had a great impact on the educational process that had preceded the opinions of Russo, Pestalutzi, Fruel, Herbert, and Dewey. Moreover, we have seen that the Sheikh of Ibn-Jamaah has taken part in formulating the origins of education and leadership.