In this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling both the soil skeleton and pore water pressure. A parametric study was carried out and different parameters were changed to study their effects on the behavior of partially saturated soil. These parameters include the degree of saturation of the soil (S) and depth of water table. The study reveals that when the soil becomes partially saturated by dropping water table at different depths with different degrees of saturation, the bearing capacity of shallow foundation increases about (4 – 7) times higher than the bearing capacity of the same soil under saturated conditions. This result is attributed to matric suction value (i.e negative pore water pressure). The behavior of soil in partially saturated condition is like
that of fully saturated condition but with smaller values of displacement. It is found that the settlement is reduced when the water table drops to a depth of 2 m (i.e. twice the foundation width) by about (92 %).
The current study aimed to use some bacterial isolates from the local soil of Baghdad city by study the effects of temperature, pH and incubation period on the growth rates of isolated bacteria and choose the optimal conditions for their diversity and for understanding bacterial growth and their requirements for survival and proliferation. This information can be applied to obtain their high growth rate for use in various fields such as agriculture, medicine and environmental sciences in the future. And it used to assess the degree of variation in across bacteria species in pH, temperature and incubation period. A number of local bacterial isolates as
In present study, the technique was used, including nuclear track detector type (CR-39), for appreciative concentrations uranium and radon in soil samples from Baghdad University Campus-AL-Jadiriyah utilizing a prolonged -term with a solid-state nuclear path sensor, a technique for charged particles has been developed., the radon concentrations, effective dose rate and uranium concentrations have measured in soil samples. Eight various venues from soil Baghdad University Campus have appointed. The results indicated variant values about uranium and radon concentrations, the average value for radon gas, effective dose rate and uranium concentrations was found to be 281.59 Bq/cm3, 7.09 mSv/y and 0.01 Bq/mm-2 respectively. All results a
... Show MoreRadon is the most dangerous natural radioactive component affecting the human population, since it is a radioactive gas that results from the decomposition process of uranium deposits in soil, rocks, and water, and it is damaging both humans and the ecosystem. The radon concentrations and exhalation rate in soil samples from various locations were determined using a passive approach with a CR-39 (CR-39 is Columbia Resin #39; it is allyl diglycol carbonate C12H18O7) detector in Amiriya region in Baghdad Governorate. The average values of radon concentrations are ranged from 47.3 to 54.2 Bq·m−3. From the obtained results, we can conclude that the values of all studied locations are
The measurements and tests of the samples conducted in the laboratories of the College of Agriculture included isolating bio-fertilizers and testing the efficiency of isolates that fix atmospheric nitrogen and solubilize phosphorous compounds. Bacteria were isolated and identified from the rhizosphere soils of different plants collected from various agricultural areas. A total of 74 bacterial isolates were obtained based on the phenotypic characteristics of the developing colonies, as well as biochemical and microscopic traits. The results of isolation and identification showed that among the 74 bacterial isolates, there were 15 isolates of A. chroococcum, 13 of Az. lipoferum, 13 of B. megaterium, 10 of P. putida, 10 of Actinomycetes, and n
... Show MoreThe current study was conducted to evaluate the effect a mixture of threespecies of arbuscular mycorrhizal fungi (Glomus etunicatum, G. leptotichum andRhizophagus intraradices) double and triple mixture and organic matter by usingplastic pots in the greenhouse at some mycorrhiza and physiological limitationscharacteristics in tomato plant after four and eight weeks of cultivation. Theresults of the determinants mycorrhiza significant increase the percentage ofmycorrhizal frequency F% dry weight of roots mycorrhiza (g.plant-1) andorganic matter in all mycorrhiza single, double and triple mixture after four andeight weeks cultivation treatments. The highest percentage of mycorrhizalfrequency and increase the dry weight of the root in the trea
... Show MoreMass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.