In this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling both the soil skeleton and pore water pressure. A parametric study was carried out and different parameters were changed to study their effects on the behavior of partially saturated soil. These parameters include the degree of saturation of the soil (S) and depth of water table. The study reveals that when the soil becomes partially saturated by dropping water table at different depths with different degrees of saturation, the bearing capacity of shallow foundation increases about (4 – 7) times higher than the bearing capacity of the same soil under saturated conditions. This result is attributed to matric suction value (i.e negative pore water pressure). The behavior of soil in partially saturated condition is like
that of fully saturated condition but with smaller values of displacement. It is found that the settlement is reduced when the water table drops to a depth of 2 m (i.e. twice the foundation width) by about (92 %).
The current study was conducted in the environment of the Martyr Monument Lake in the city center of Baghdad during 2019 to monitor the impact of climatic conditions such as drought, water shortage, high temperatures in the environment of the city and the lack of water flow during the years 2015 to 2018 and their effects on some of the physical and chemical factors of water and the dynamics of the phytoplankton community in the lake environment. Heterogeneity of some studied environmental factors, including air and water temperature, permeability, water depth, pH, DO, BOD5, nutrients, nitrate, NO3, and phosphates were found. The results showed the effect of climate change and the pres
In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show MoreThe varied thermal conductivity (insulation) of silica aerogel with heating for different pH has been investigated, it has been depended on ambient pressure drying method in the preparing silica aerogel samples, also six different pH of samples (1, 2, 3, 7, 8 and 9) were treated under five degree of heating with (50,100,150,200 and 250) ᴼC. This technique is important to test the carry-outs hydrophobic silica to temperature without high-quality material changes in the basic characteristics. The hot-wire technique is used in this work to examine the thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR) depended to characterize the bonds and their artificial by heating. Resu
... Show MoreAn experimental investigation has been made to study the influence of using v-corrugated aluminum fin on heat transfer coefficient and heat dissipation in a heat sink. The geometry of fin is changed to investigate their performance. 27 circular perforations with 1 cm diameter were made. The holes designed into two ways, inline arrangement and staggered in the corrugated edges arrangement. The experiments were done in enclosure space under natural convection. Three different voltages supplied to the heat sink to study their effects on the fins performance. All the studied cases are compared with v-corrugated smooth solid fin. Each experiment was repeated two times to reduce the error and the data recorded after reaching t
... Show MoreThe idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column
In recent years, there has been a very rapid development in the field of clean energy due to the huge increase in the demand, which prompted the manufacturers and the designers to increase the efficiency and operating life of the energy systems and especially for wind turbine. It can be considered that the control unit is the main key of the wind turbines. Consequently, it’s essential to understanding the working principle of this unit and spotlight on the factors which influence significantly on the performance of wind turbine system. Simulink technique is proposed to find the response of the wind turbine system under different working conditions. In this paper, it was investigated
Static loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piez
... Show MoreThis paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreIn earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show More