The differential protection of power transformers appears to be more difficult than any type of protection for any other part or element in a power system. Such difficulties arise from the existence of the magnetizing inrush phenomenon. Therefore, it is necessary to recognize between inrush current and the current arise from internal faults. In this paper, two approaches based on wavelet packet transform (WPT) and S-transform (ST) are applied to recognize different types of currents following in the transformer. In WPT approach, the selection of optimal mother wavelet and the optimal number of resolution is carried out using minimum description length (MDL) criteria before taking the decision for the extraction features from the WPT tree. In ST approach,
the spectral energy index and the standard deviation (STD) are calculated from the S-matrix obtained by discrete S-transform. The two approaches are tested for generating a trip signal and disconnecting the transformer supply experimentally using 1KVA, 220/110V, 50Hz, ∆ / Y threephase transformer. The experimental results show that the trip signal is initiated faster in WPT approach while the transformer is disconnected from the supply after a delay of 10-15msec in the
two approaches due to computer interface and the relay circuit used.
DBN Rashid, JOURNAL OF XI'AN UNIVERSITY OF ARCHITECTURE & TECHNOLOGY, 2020
An efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
DBN Rashid, Astra Salvensis, 2018 - Cited by 1
BN Rashid, Nasaq, 2015