Preferred Language
Articles
/
joe-2058
Load Distribution Factors For Horizontally Curved Composite Concrete-Steel Girder Bridges
...Show More Authors

This paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important role in the design of curved girders in horizontally curved composite bridges. Span length, number of girders and girder spacing generally affect the values of the moment distribution factors. Moreover, present study reveals that AASHTO Guide criterion to treat curved bridges with limited curvature as straight one is conservative. Based on the data generated from the parametric study, sets of empirical equations are developed for the moment distribution factors for straight and curved steel I-girder bridges when subjected to the AASHTO truck loading and due to dead loading.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 08 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayes estimators for reliability and hazard function of Rayleigh-Logarithmic (RL) distribution with application
...Show More Authors

In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application

Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Proposed Entropy Loss function and application to find Bayesian estimator for Exponential distribution parameter
...Show More Authors

The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2013
Journal Name
Plos One
Reliability Measurement for Mixed Mode Failures of 33/11 Kilovolt Electric Power Distribution Stations
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2012
Journal Name
Journal Of Kufa For Mathematics And Computer
On Jeffery Prior Distribution in Modified Double Stage Shrinkage-Bayesian Estimator for Exponential Mean
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Estimator for the Scale Parameter of the Normal Distribution Under Different Prior Distributions
...Show More Authors

In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
Double Stage Cumulative Shrunken Bayes Estimator for the variance of Normal distribution for equal volume of two sample
...Show More Authors

In this article we study the variance estimator for the normal distribution when the mean is un known depend of the cumulative function between unbiased estimator and Bays estimator for the variance of normal distribution which is used include Double Stage Shrunken estimator to obtain higher efficiency for the variance estimator of normal distribution when the mean is unknown by using small volume equal volume of two sample .

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Agricultural And Statistical Sciences
ON ERROR DISTRIBUTION WITH SINGLE INDEX MODEL
...Show More Authors

In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.

Scopus
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
New Robust Estimation in Compound Exponential Weibull-Poisson Distribution for both contaminated and non-contaminated Data
...Show More Authors

Abstract

The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.

 

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using Truncated Test for Finding the Parameters of Single Sampling Plan under Distribution of Log-Logistic
...Show More Authors

A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.

View Publication Preview PDF
Crossref