Preferred Language
Articles
/
joe-2058
Load Distribution Factors For Horizontally Curved Composite Concrete-Steel Girder Bridges
...Show More Authors

This paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important role in the design of curved girders in horizontally curved composite bridges. Span length, number of girders and girder spacing generally affect the values of the moment distribution factors. Moreover, present study reveals that AASHTO Guide criterion to treat curved bridges with limited curvature as straight one is conservative. Based on the data generated from the parametric study, sets of empirical equations are developed for the moment distribution factors for straight and curved steel I-girder bridges when subjected to the AASHTO truck loading and due to dead loading.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Effect of Fire Flame (High Temperature) on the Self Compacted Concrete (SCC) One Way Slabs
...Show More Authors

Experimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Apr 09 2022
Journal Name
Engineering, Technology & Applied Science Research
Effect of Sustainable Glass Powder on the Properties of Reactive Powder Concrete with Polypropylene Fibers
...Show More Authors

Global warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was

... Show More
View Publication
Crossref (16)
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Engineering Science And Technology
Effect of cooling mode on serviceability of partially prestressed-concrete beams exposed to fire flame
...Show More Authors

Preview PDF
Scopus
Publication Date
Mon Dec 01 2025
Journal Name
Case Studies In Construction Materials
Optimized stress-strain modeling of eco-friendly fiber-reinforced concrete members using meta-heuristic algorithms
...Show More Authors

Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Evaluating the Uses of Concrete Demolishing Waste in improving the Geotechnical Properties of Expansive Soil
...Show More Authors

Expansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
The Journal Of Solid Waste Technology And Management
Recycling of Waste Compact Discs in Concrete Mix: Lab Investigations and Artificial Neural Networks Modeling
...Show More Authors

This study aimed to investigate the incorporation of recycled waste compact discs (WCDs) powder in concrete mixes to replace the fine aggregate by 5%, 10%, 15% and 20%. Compared to the reference concrete mix, results revealed that using WCDs powder in concrete mixes improved the workability and the dry density. The results demonstrated that the compressive, flexural, and split tensile strengths values for the WCDs-modified concrete mixes showed tendency to increase above the reference mix. However, at 28 days curing age, the strengths values for WCDs-modified concrete mixes were comparable to those for the reference mix. The leaching test revealed that none of the WCDs constituents was detected in the leachant after 180 days. The

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review
...Show More Authors

Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of  concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up t

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Journal Of Engineering
Experimental Investigation of Crack Initiation and Growth in Concrete Slabs Placed Directly on Clayey Soil
...Show More Authors

The main objective of this study is to examine the impact of moisture concrete of clayey soil on the concrete slabs placed directly over it. This experimental study presents the mechanical properties of the concrete slab when placed on different clayey soil moisture content ranging from 0% to the optimum moisture content of 35%. The tests were performed on soil concrete specimens of 25*30*50 mm exposed to sprayed water curing conditions for 28 days. Tests of compressive strength, ultrasonic pulse velocity, crack depth and crack width were investigated through this paper. An ejection relationship between compressive strength of concrete and water content in the soil was observed, with a 26% increase with water increasing from 0% to 35%. T

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Engineering
Finite Element Analysis of Reinforced Concrete T-Beams with Multiple Web Openings under Impact Loading
...Show More Authors

Publication Date
Sun Dec 01 2019
Journal Name
Civil Engineering Journal
Structural Behavior of High Strength Laced Reinforced Concrete One Way Slab Exposed to Fire Flame
...Show More Authors

In this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of  for two hours duration and then after the specimens were cooled suddenly by spraying water. The

... Show More
View Publication
Crossref (4)
Crossref