Preferred Language
Articles
/
joe-2044
Estimation of Some Mechanical Soil Properties from Static and Dynamic Plate Load Tests
...Show More Authors

When the depth of stressed soil is rather small, Plate Load Test (PLT) becomes the most efficient test to estimate the soil properties for design purposes. Among these properties, modulus of subgrade reaction is the most important one that usually employed in roads and concrete pavement design. Two methods are available to perform PLT: static and dynamic methods. Static PLT is usually adopted due to its simplicity and time saving to be performs in comparison with cyclic (dynamic) method. The two methods are described in ASTM standard.

In this paper the effect of the test method used in PLT in estimation of some mechanical soil properties was distinguished via a series of both test methods applied in a same site. The comparison of the test results between both methods showed that the dynamic (cyclic) method gives lower values of soil properties than the static one does.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Free Head Shear Test on Decomposed Granite Soil
...Show More Authors

The study presents the test results of Completely Decomposed Granite (CDG) soil tested under drained triaxial compression, direct shear and simple shear tests. Special attention was focused on the modification of the upper halve of conventional Direct Shear Test (DST) to behave as free
head in movement along with vertical strain control during shear stage by using Geotechnical Digital System (GDS). The results show that Free Direct Shear Test (FDST) has clear effect on the measured shear stress and vertical strain during the test. It has been found that shear strength
parameters measured from FDST were closer to those measured from simple shear and drained triaxial compression test. This study also provides an independent check on

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Experimental and Theoretical Determination of Settlement of Shallow Footing on Liquefiable Soil
...Show More Authors

A high settlement may take place in shallow footing when resting on liquefiable soil if subjected to earthquake loading. In this study, a series of shaking table tests were carried out for shallow footing resting on sand soil. The input motion is three earthquake loadings (0.05g, 0.1g, and 0.2g). The study includes a reviewing of theoretical equations (available in literatures), which estimating settlement of footings due to earthquake loading, calibration, and verification of these equations with data from the shaking table test for improved soil by grouting and unimproved soil. It is worthy to note that the grouting materials considered in this study are the Bentonite and CKD slurries. A modification to the seismic set

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Iraqi Journal Of Soil Science
EFFECTIVE USE OF FERTILIZERS AND ANALYSIS OF SOIL USING PRECISION AGRICULTURE TECHNIQUES
...Show More Authors

Soil fertility is a crucial factor in measuring soil quality, it indicates the extent to which soil can support plant life. Soil fertility is measured by the amount of macro and micronutrients, pH, etc. Soil nutrients are depleted after each harvest and therefore must be added. To maintain soil nutrient levels, fertilizer is added to the soil. Adding fertilizer in the precise amount is a matter of great importance because excess or insufficient application can harm plant life and reduce productivity. The use of modern technology is a solution to this problem. Although automated techniques for sowing, weeding, crop harvesting, etc. have been proposed and implemented, none of the techniques are aimed to maintaining soil fertility. The study a

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Structural Behavior of Confined Concrete Filled Aluminum Tubular (CFT) Columns under Concentric Load
...Show More Authors

This paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 13 2023
Journal Name
Arpn Journal Of Engineering And Applied Sciences
A NEW APPROACH FOR MODELLING THE VIBRATION OF BEAMS UNDER MOVING LOAD EFFECT
...Show More Authors

In this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Clay Masonry Prism under Vertical Load Using Detailed Micro Modeling Approach
...Show More Authors

The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m

... Show More
Crossref (1)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Analytical Approach for Load Capacity of Large Diameter Bored Piles Using Field Data
...Show More Authors

An analytical approach based on field data was used to determine the strength capacity of large diameter bored type piles. Also the deformations and settlements were evaluated for both vertical and lateral loadings. The analytical predictions are compared to field data obtained from a proto-type test pile used at Tharthar –Tigris canal Bridge. They were found to be with acceptable agreement of 12% deviation.

               Following ASTM standards D1143M-07e1,2010, a test schedule of five loading cycles were proposed for vertical loads and series of cyclic loads to simulate horizontal loading .The load test results and analytical data of 1.95

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Effect of Embedment on Generated Bending Moment in Raft Foundation under Seismic Load
...Show More Authors

This research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 04 2025
Journal Name
Engineering, Technology & Applied Science Research
Investigating Fiber Reinforcement Effects on the Performance of Concrete Pavements under Repeated Load
...Show More Authors

Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
Degradation of Indigo Dye Using Quantum Mechanical Calculations
...Show More Authors

The semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11.  The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref