Preferred Language
Articles
/
joe-2043
A Modified Strength Pareto Evolutionary Algorithm 2 based Environmental /Economic Power Dispatch
...Show More Authors

A Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, and modified archive truncation. In addition fuzzy set theory is employed to extract the best compromise solution. Several optimization run of the proposed method are carried out on 3-units system and 6-units standard IEEE 30-bus test system. The results demonstrate the capabilities of the proposed method to generate well-distributed Pareto-optimal non-dominated feasible solutions in single run. The comparison with other multi-objective methods demonstrates the superiority of the proposed method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Cuadernos De Economía
The Role of Carbon Pricing Mechanisms and Renewable Energy Technologies in Reducing Carbon Emissions: Evidence from the International Economy
...Show More Authors

Abstract: The international community now places significant emphasis on achieving zero carbon emissions, requiring both new researchers and experienced policymakers to prioritise this goal. This article examines the effects of carbon taxes, carbon cap and trade, renewable energy (RE) production and consumption, and economic growth (EG) on carbon emission reduction in the United States, Japan, Canada, and Australia. The study collected secondary data from the World Development Indicators (WDI) secondary source spanning the years 1991 to 2022. The study examines the relationship between variables using the cross-sectionally augmented autoregressive distributed lag (CS-ARDL) approach. The findings indicate that carbon taxes, carbon cap and tr

... Show More
View Publication Preview PDF
Scopus (5)
Scopus
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Nov 01 2012
Journal Name
2012 International Conference On Advanced Computer Science Applications And Technologies (acsat)
Data Missing Solution Using Rough Set theory and Swarm Intelligence
...Show More Authors

This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
DNA Encoding and STR Extraction for Anomaly Intrusion Detection Systems
...Show More Authors

View Publication
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
On Gradient Descent Localization in 3-D Wireless Sensor Networks
...Show More Authors

Localization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Wavenet (FWN) classifier for medical images
...Show More Authors

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

&n

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 23 2024
Journal Name
American Journal Of Social And Humanitarian Research
Voices of Feminism in Monica Ali’s Brick Lane
...Show More Authors

This paper explores the feminist voices in Monica Ali’s novel Brick Lane, focusing on the character development of Nazneen as she evolves from a compliant, dependent wife into a self-reliant, empowered individual. The analysis highlights how Nazneen’s journey toward financial independence through her sewing work plays a critical role in her personal transformation. The paper also examines the impact of female support networks on her empowerment, alongside the cultural obstacles she encounters as an immigrant woman living in London. Using feminist theory, this study discusses the complex interplay between culture, gender, and identity, emphasizing the multifaceted nature of women’s empowerment in a diverse cultural setting. Brick Lane

... Show More
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
The Effective of Pressure and Sintering Temperature for Hardness Characteristics of Shape Memory Alloy by Using Taguchi Technique
...Show More Authors

This paper presents the Taguchi approach for optimization of hardness for  shape memory alloy (Cu-Al-Ni) . The influence of  powder metallurgy parameters on hardness has been investigated. Taguchi technique and ANOVA were used for analysis. Nine experimental runs based on Taguchi’s L9 orthogonal array were performed (OA),for two parameters was study (Pressure and sintering temperature) for three different levels (300 ,500 and 700) MPa ,(700 ,800 and  900)oC respectively . Main effect, signal-to-noise (S/N) ratio was study, and analysis of variance (ANOVA) using  to investigate the micro-hardness characteristics of the shape memory alloy .after application the result of study shown the hei

... Show More
View Publication Preview PDF