The results of theoretical and experimental investigations carried out to study the effect of load and relative sliding speed on the abrasive wear behavior in drilling bit teeth surfaces of an insert tungsten carbide bit have been presented. Experimentally, an apparatus for abrasive wear tests conducted on the modified ASTM-G65 was modified and fabricated to facilitate loading and measurement of wear rate for the sand/ steel wheel abrasion test, which involves two cases of contact; first is at dry sand and second is under wet condition. These tests have been carried under varied operating parameters of normal load and sliding speed. A theoretical model based upon the Archard equation has been developed for predicting wear simulation by using ANSYS12.1 program for dry and wet abrasive wear rates. The general trend for all the results of wet tests is that an increase in the applied load as well as wheel rotational speed produces an increase in wear rate, while at the dry tests the behavior shows an increase and fluctuating in wear rate due to the transition in wear mechanism. As compared to the dry tests, the volume losses in wet tests have much higher values, that is because the presence of water which causes high adhesion between sand particles and specimen surface as well as wear-corrosion interaction which accelerate the wear rates. The percentage errors between theoretical and experimental results are more stable with the wet than dry tests due to the stability in wear rates.
This work presents a novel technique for the detection of oil aging in electrical transformers using a single mode optical fiber sensor based on surface plasmon resonance (SPR). The aging of insulating oil is a critical issue in the maintenance and performance of electrical transformers, as it can lead to reduce insulation properties, increase risk of electrical breakdown, and decrease operational lifespan. Many parameters are calculated in this study in order to examine the efficiency of this sensor like sensitivity (S), signal to noise ratio (SNR), resolution (refractive index unit) and figure of merit (FOM) and the values are for figure of merit is 11.05, the signal to noise ratio is 20.3, the sensitivity is 6.63, and the resolution is 3
... Show MoreAbstract: Iatrogenic furcal root perforations are serious complications during dental treatment. This study was aimed to compare the sealing ability of new bioceramic root repair material TotalFill® with the other perforation repair materials (GIC, MTA and Biodentine) using a dye- extraction method.Materials and Methods: Forty extracted, human mandibular molars with non-fused well developed root were collected. Artificial perforations were made from the external surface of the teeth. Then the teeth were randomly divided into 4 experimental groups (n= 10) according to the type of repair material used in this study; Medifil glass ionomercement, TotalFill® bioceramic root repair material, BiodentineTM and MTA Plus. The specimens were then im
... Show MoreDesign and build a center basins new p-type four mirrors were studied its effect on all parameters evaluating the performance of the solar cell silicon in the absence of a cooling system is switched on and noted that the efficiency of the performance Hzzh cell increased from 11.94 to 21 without cooling either with cooling has increased the efficiency of the
Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.