Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.
The current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes, different traffic rates, different traffic sources, different pause times and different simulation times . A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Refere
... Show Moreاسهم تطور ادوات الاسواق المالية والتغيرات العالمية كالعولمة المالية وتحرير الاسواق المالية العالمية في احداث العديد من الازمات ومنها الازمة المالية الدولية التي تعد من اكثر الظواهر ملازمة للاسواق المالية على الرغم من التطورات التي تشهدها تلك الاسواق نتيجة تطور ادواتها المالية وانفتاحها على بعضها البعض. وتتعرض الاسواق المالية الدولية والناشئة (Emerging Market) منها بشكل خاص ا
... Show MoreThe survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show MoreTreated effluent wastewater is considered an alternative water resource which can provide an important contribution for using it in different purposes, so, the wastewater quality is very important for knowing its suitability for different uses before discharging it into fresh water ecosystems. The wastewater quality index (WWQI) may be considered as a useful and effective tool to assess wastewater quality by indicating one value representing the overall characteristic of the wastewater. It could be used to indicate the suitability of wastewater for different uses in water quality management and decision making. The present study was conducted to evaluate the Al-Diwaniyah sewage treatment plant (STP) effluent quality based on wastewa
... Show MoreSocial media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq
... Show MoreIn this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show More
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreThe emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreIn recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr
... Show More