This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as compared with matching by minimum distance, gave (94%) and (83%) score by using group (1), (gp) and features respectively, which is much better than the minimum distance. Recognition using (gp) neural network (NN) gave a (94%) and (72%) score by using group (2), (gp) and features respectively, while the minimum distance gave (11%) and (33%) scores. Time consumption
through the recognition process using (NN) with (gp) is less than that minimum distance.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreFacial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreWithin this research, The problem of scheduling jobs on a single machine is the subject of study to minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address the research problems, and some rules provide efficient (optimal) solutions to these problems. It has also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an effic
... Show MoreAbstract
This paper presents mechanical and electrical design, and implementation process of industrial robot, 3-DoF type SCARA (selective compliment assembly robot arm),with two rotations and one translation used for welding applications.The design process also included the controller design which was based on PLC(programmable logic controller) as well as selection of mechanical and electrical components.The challenge was to use the available components in Iraq with reasonable costs. The robot mentioned is fully automated using programmable logic controller PLC(Zelio type SR3-B261BD),with 16inputs and 10 outputs. The PLC was implemented in FBD logic to obtain three different automatic motions with hi
... Show MoreThe new azo dye was synthesized via the reaction of the diazonium salt form of 3-aminophenol with 2-hydroxyquinoline. This dye was then used to access a series of complexes with the chlorides of manganese, iron, zinc, cadmium, and vanadium sulfate. The prepared ligand and its complexes were characterized by FT-IR spectroscopy, UV-visible spectroscopy, mass spectrometry, thermogravimetric analysis, differential scanning calorimeter, and microelemental analysis. Conductivity, magnetic susceptibility, metal content, and chlorine content of the complexes were also measured. The ligand and cadmium complex were identified using1H NMR and 13C NMR spectroscopy. The results showed that the shape of the ligand is a trigonal planner, and the c
... Show MoreThe reaction of 2-amino-benzothiazole with bis [O,O-2,3,O,O – 5,6 – (chloro(carboxylic) methiylidene) ] – L – ascorbic acid (L-AsCl2) gave new product 3-(Benzo[d]Thaizole-2-Yl) – 9-Oxo-6,7,7a,9-Tertrahydro-2H-2,10:4,7-Diepoxyfuro [3,2-f][1,5,3] Dioxazonine – 2,4 (3H) – Dicarboxylic Acid, Hydro-chloride (L-as-am)), which has been insulated and identified by (C, H, N) elemental microanalysis (Ft-IR),(U.v–vis), mass spectroscopy and H-NMR techniques. The (L-as am) ligand complexes were obtained by the reaction of (L-as-am) with [M(II) = Co,Ni,Cu, and Zn] metal ions. The synthesized complexes are characterized by Uv–Visible (Ft –IR), mass spectroscopy molar ratio, molar conductivity, and Magnetic susceptibility techniques. (
... Show More