This paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced system, a control law is designed using pole placement and output feedback techniques. The analyzed case studies concern the vibration reduction of a cantilever beam with a collocated symmetric piezoelectric sensor/actuator pair bonded on the surface. The transverse displacement time history, for an initial displacement field at the free end, is evaluated. Results are compared with other works, and the control design shows that Pole Placement method is an effective method for vibration suppression of the beam and settling time reduction.
Liquid – liquid equilibria data were measured at 293.15 K for the pseudo ternary system (sulfolane + alkanol) + octane + toluene. It is observed that the selectivity of pure sulfolane increases with cosolvent methanol but decreases with increasing the chain length of hydrocarbon in 1-alkanol. The nonrandom two liquid (NRTL) model, UNIQUAC model and UNIFAC model were used to correlate the experimental data and to predict the phase composition of the systems studied. The calculation based on NRTL model gave a good representation of the experimental tie-line data for all systems studied. The agreement between the correlated and the experimental results was very good
The study aims to study the geographical distribution of electricpower plants in Iraq, except the governorates of Kurdistan Region (Dohuk, Erbil, Sulaymaniyah) due to lack of data.
In order to reach the goal of the research was based on some mathematical equations and statistical methods to determine how the geographical distribution of these stations (gas, hydropower, steam, diesel) within the provinces and the concentration of them as well as the possibility of the classification of power plants in Iraq to facilitate understanding of distribution in a scientific manner is characterized by objectively.
The most important results of the research are that there are a number of factors that led to the irregular distribution
... Show MoreAbstract
The aim of this paper is to investigate and discuss the mechanisms of corrosion of epoxy coatings used for potable water tanks. Two distinct types of Jotun epoxy coatings: Tankguard 412 contained polyamine cured epoxy and Penguard HB contained polyamide cured epoxy, were tested and studied using the electrochemical impedance spectroscopic (EIS) method. The porosity of epoxy coatings was determined using EIS method. The obtained results showed that the two epoxy coatings have excellent behavior when applied and tested in potable water of Basrah city. Polyamine is more resistance to water corrosion compared to polyamide curing epoxy and has high impedance values. Microscopic inspection after te
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreThe transportation model is a well-recognized and applied algorithm in the distribution of products of logistics operations in enterprises. Multiple forms of solution are algorithmic and technological, which are applied to determine the optimal allocation of one type of product. In this research, the general formulation of the transport model by means of linear programming, where the optimal solution is integrated for different types of related products, and through a digital, dynamic, easy illustration Develops understanding of the Computer in Excel QM program. When choosing, the implementation of the form in the organization is provided.