This paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced system, a control law is designed using pole placement and output feedback techniques. The analyzed case studies concern the vibration reduction of a cantilever beam with a collocated symmetric piezoelectric sensor/actuator pair bonded on the surface. The transverse displacement time history, for an initial displacement field at the free end, is evaluated. Results are compared with other works, and the control design shows that Pole Placement method is an effective method for vibration suppression of the beam and settling time reduction.
The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence
... Show MoreBiosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
The change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep
A liquid-solid chromatography of Bovine Serum Albumin (BSA) on (diethylaminoethyl-cellulose) DEAE-cellulose adsorbent is worked experimentally, to study the effect of changing the influent concentration of (0.125, 0.25, 0.5, and 1 mg/ml) at constant volumetric flow rate Q=1ml/min. And the effect of changing the volumetric flow rate (1, 3, 5, and 10 ml/min) at constant influent concentration of Co=0.125mg/ml. By using a glass column of (1.5cm) I.D and (50cm) length, packed with adsorbent of DEAE-cellulose of height (7cm). The influent is introduced in to the column using peristaltic pump and the effluent concentration is investigated using UV-spectrophotometer at 30oC and 280nm wavelength. A spread (steeper) break-through curve is gained
... Show MoreModified asphalt is considered one of the alternatives to address the problems of deficiencies in traditional asphalt concrete, as modified asphalt addresses many of the issues that appear on the pavement layers in asphalt concrete, resulting from heavy traffic and vehicles loaded with loads that exceed the design loads and the large fluctuations in the daily and seasonal temperatures of asphalt concrete. The current study examined the role of polyphosphoric acid (PPA) as a modified material for virgin asphalt when it was added in different proportions (1%, 2%, 3%, 4%) of the asphalt weight. The experimental program includes the volumetric characteristics associated with the Marshall test, the physical properties, and th
... Show More
A study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Stand
... Show More