The present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin heights ( 50mm and 35mm) and distance between the fins (3mm and 6mm). It is observed that the heat transfer increases with the increase in the frequency and Reynolds number. It is further observed that triple fins with (height=50mm and distance between the fins=3mm) gives better enhancement as compared to other
cases, The study shows that the piezoelectric actuator when mounted on the rectangular fins gives great promise for enhancing the heat transfer rate
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
Nimodipine (NMD) is a dihydropyridine calcium channel blocker useful for the prevention and treatment of delayed ischemic effects. It belongs to class ? drugs, which is characterized by low solubility and high permeability. This research aimed to prepare Nimodipine nanoparticles (NMD NPs) for the enhancement of solubility and dissolution rate. The formulation of nanoparticles was done by the solvent anti-solvent technique using either magnetic stirrer or bath sonicator for maintaining the motion of the antisolvent phase. Five different stabilizers were used to prepare NMD NPs( TPGS, Soluplus®, HPMC E5, PVP K90, and poloxamer 407). The selected formula F2, in which Soluplus
has been utilized as a stabilizer, has a par
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i
... Show MoreRecovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
A numerical study of the two-dimensional steady free convection flow in an inclined annulus between two concentric square cavities filled with a porous medium is presented in this paper for the case when the side outer walls are kept with differentially heated temperature while the horizontal outer walls and the inner walls are insulated. The heated wall is assumed to have spatial sinusoidal temperature variation about a constant mean value. The Darcy model is used and the fluid is assumed to be a standard Boussinesq fluid. For the Cartesian coordinate system, the governing equations which were used in stream function form are discretized by using the finite difference method with successive under – relaxation method (SUR) and are solv
... Show More