The problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work that addresses different methods of sinusoid frequency estimation involving
specific colored noise models such as the moving average (MA) noise model. An insightful theoretical analysis is presented to support the practical findings.
This study included 46 patients with liver hydatid cyst diagnosed clinically and surgically. Control group consist of 22 healthy volunteers. The patients were divided according to the size of the cysts into more and less than 5 cm diameter size, 33 and 13, respectively. Also they were divided into primary and secondary hydatid cyst infection, 30 and 16, respectively. Significant increase of GOT, GPT and ALP levels were recorded due to hydatid cyst infection and had direct effect on the liver function, beside an increase in total bilirubin in patients serum compared with the control, also the same occurred in the secondary infection compared with primary infection, patients with> 5 cm showed significant increase in the above levels compared
... Show MoreBackground: Age determination of skeletal remains is apart of many medico-legal as well as anthropological examination. Many anatomical structures have been studied, but the teeth and their measurements seem to be the most reliable method since teeth represent the most durable and resilient part of the skeleton. This study was undertaken for estimating the chronological age among Iraqi adult subjects based on various morphological variables of canine teeth using digital panoramic radiograph. Material and methods: The sample in the current study consisted of 240 Iraqi patients attending to the dental radiological clinic at College of dentistry/ Babylon University taking panoramic radiographs for different diagnostic purposes, the study samp
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThis study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDocetaxel is an effective treatment approved for many types of cancers, but its effectiveness in clinical practice can be compromised by significant occurrence of adverse drug reactions. The aim of the current study was to measure the distribution of adverse drug reactions of docetaxel reported in Iraq and to assess the causality, severity, seriousness, preventability, expectedness and outcome of these adverse reactions. A retrospective study conducted on individual case safety reports from the Iraqi Pharmacovigilance Center / Ministry of Health. The study included 118 individual case safety report containing 236 adverse drug reactions.
Most of the adverse drug reactions were related to skin and subcutaneous tissue disorders(26.7%), f