Poly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free energy (E) was calculated and the value of 5 KJ/mole indicated that the main
mechanism governing the adsorption of MA on PUF-Bentonite composite was physical in
nature. The kinetics of adsorption tested for first order, pseudo second order models and
Elovich’s equation, results showed the adsorption followed the pseudo-second-order model.
Furfural is a toxic aromatic aldehyde that can cause a severe environmental problem especially the wastewater drown from petroleum refinery units. In the present work, a useless by-product from local furniture manufacturing industry; sawdust was used as raw material for the preparation of activated carbon which is chemically activated with phosphoric acid. The effect of adsorption variables which include initial pH of solution (2-9), agitation speed (50-250) rpm, agitation time (15-120) min, initial concentration of furfural (50-250) ppm, and amount of adsorbent material (0.5-2.5) g for the three adsorbents used (prepared activated carbon, commercial activated carbon and raw sawdust) were investigated in a batch process
... Show MoreStrengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the e
... Show MoreFree vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
Background: Dental erosion is a common oral condition which results due to consumption of high caloric and low pH acidic food such as carbonated drinks and fruit juices. It is expected that these food types can cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. So, this study aimed to evaluate and compare the erosive potential effects of orange fruit juice and Miranda orange drink on the microhardness of an orthodontic composite material. Materials and methods: Thirty discs with a thickness of 2 mm and a diameter of 10 mm were prepared from orthodontic bonding composite. The prepared discs were equally divided into three groups (n=10). Microhardness analysis was carried out both prior to
... Show MoreTo enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehen
... Show MoreThe aim of this investigation is to evaluate the experimental and numerical effectiveness of a new kind of composite column by using Glass Fiber‐Reinforced Polymer (GFRP) I‐section as well as steel I‐section in comparison to the typical reinforced concrete one. The experimental part included testing six composite columns categorized into two groups according to the slenderness ratio and tested under concentric axial load. Each group contains three specimens with the same dimensions and length, while different cross‐section configurations were used. Columns with reinforced concrete cross‐section (reference column), encased GFRP I‐section, and encased steel I‐section were adopted in each
A novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show More