Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorithms are proposed in this work with a discussion on the difference between them. These algorithms find the shortest route through finding the optimal rate between two nodes in the wireless networks but with bounded end-to-end delay. The Dijkstra-based algorithm is especially favorable in terms of processing time. We also present a comparison between our proposed single-constraint Dijkstra-based routing algorithm and the mesh routing algorithm (MRA) existing in the literature to clarify the merits of the former.
Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,
... Show MoreStrives Total Productive Maintenance to increase the overall effectiveness of the equipment through the early involvement in the design and manufacture of equipment productivity. It also operates in an environment of simultaneous engineering work on the synchronization of activities to take advantage of early information by maintenance engineers, design, operation, and that helps to reduce the faults and facilitate future maintenance tasks.
Has adopted a search in the theoretical concept of the total maintenance productivity and concurrent engineering activities carried out during which the conjunction a
... Show MoreThis study focuses on a comparison of the performance of two similar locally-fabricated solar water heaters. One of the collectors features a new design for accelerated absorber; its risers are made of converging ducts whose exit area is half that of the entrance. The other collector is a conventional absorber, with risers of the same cross sectional area along its length. Each collector is the primary part of an indirect thermosyphon circulation solar hot water system. Both collectors face south with a fixed tilt angle of 33.3
The present study dealt with the removal of methylene blue from wastewater by using peanut hulls (PNH) as adsorbent. Two modes of operation were used in the present work, batch mode and inverse fluidized bed mode. In batch experiment, the effect of peanut hulls doses 2, 4, 8, 12 and 16 g, with constant initial pH =5.6, concentration 20 mg/L and particle size 2-3.35 mm were studied. The results showed that the percent removal of methylene blue increased with the increase of peanut hulls dose. Batch kinetics experiments showed that equilibrium time was about 3 hours, isotherm models (Langmuir and Freundlich) were used to correlate these results. The results showed that the (Freundlich) model gave the best fitting for adsorption capacity. D
... Show MoreEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreToxoplasma gondii has a worldwide distribution and it is one of the most prevalent infectious agents in Iraq. The study was conducted on 200 serum samples of unmarried female university of students age ranged between 18 to 26 years to detect Toxoplasma gondii antibodies. The aim of this study was to detect T. gondii antibodies among unmarried female students in Iraqi universities using different serological tests. Seventy six (38%) serum samples out of 200 subjects were positive for toxoplasma antibodies by Latex agglutination test (LAT). Among 76 LAT sera positive ,only 58 (29%) serum samples were positive with toxoplasma IgG ELISA test , however , the results of IgM ELISA assay were positive only for 3 (1.5%) unmarried
... Show MoreThe surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee
... Show MoreModified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show MoreSolar energy is still commonly used to produce clean drinking water due to its simple construction, low maintenance, and ecofriendliness. This work aims to experimentally investigate the yield upgrade and the thermal performance of a novel concentrated single‐axis tracking trough tubular solar still (TSS). This tubular still is identified by three baffles that generate four interrupted sections in the U‐receiver, which is inserted with copper mesh and fitted in a hexagonal‐shaped glass cover. Two identical TSS models were side‐by‐side outdoor tested in Baghdad‐Iraq 33.3° N and 43.3° E from January to March 2024. The first is inserted with black copper mesh (Model I), and the other h