A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil was considered homogeneous anisotropic. For each case, the length of protection (L) and the volume of the superstructure (V) required to satisfy the factors of safety mentioned above were calculated. These data were used to obtain an artificial neural network model for estimating (L) and (V) for a given length of upstream cutoff (S1), length of downstream cutoff (S2), head difference (H), length of floor (B), depth of impervious layer (D) and degree of anisotropy (kx/ky).
A MatLAB code was written to perform a genetic algorithm optimization modeling using the obtained ANN model .The obtained optimum solution for some selected cases were compared with the Geo-studio modeling to find the length of protection required in the downstream side and volume required for superstructure. Values estimated were found comparable to the obtained values from the Genetic Algorithm model.
An optimization calculation is made to find the optimum properties of combined quadrupole lens which consists of electrostatic and magnetic lens. Both chromatic and spherical aberration coefficients are reduced to minimum values and the achromatic aberration is found for many cases. These calculations are achieved with the aid of transfer matrices method and using rectangular model of field distribution, where the path of charged-particles beam traversing the field has been determined by solving the trajectory equation of motion and then the optical properties for lens have been computed with the aid of the beam trajectory along the lens axis. The computations have been concentrated on determining the chromatic and spher
... Show MoreThe current study aims at identifying the impact of using learning acceleration model on the achievement of mathematics for third intermediategrade students. Forachieving this, the researchers chose the School (Al-Kholood Secondary School for Girls) affiliated to the General Directorate of Babylon Education / Hashemite Education Department for the academic year (2021/2021), The sample reached to (70) female students from the third intermediate grade, with (35) female students for each of the two research groups. The two researchers prepared an achievement test consisting of (25) objective items of multiple choice type, The psychometric properties of the test were confirmed, and after the completion of the experiment, the achievement test wa
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show MoreIn this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreKrawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreSpeech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
In many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreBackground: The size of the nasopharyngeal airway was believed to have an important role in the development of the dentofacial structure. This study was carried out to test the relation between the nasopharyngeal dimensions with some dento-cranial measurements in class I and II jaw relationship. Materials and Methods: This study was done on 60 subjects (30 males and 30 females) at age range 18-25 years. Cephalometric radiograph has been taken to each subject and the measurements were recorded. The sample was divided into two groups, class I skeletal relationship (15 males and 15 females) and class II skeletal relationship (15 males and 15 females). Comparisons between the different study groups were undertaken. Results: In class I skeletal
... Show More