This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
Autonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.
This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and
... Show MoreIn IRAQ, the air conditioners are the principal cause of high electrical demand. In summer, the outer temperature sometimes exceeds 500C which significantly effects on the A/C system performance and power consumed. In the present work, the improvement in mechanical and electrical performance of split A/C system is investigated experimentally and analytically. In this paper, performance and energy saving enhancement of a split-A/C system was experimentally investigated to be efficiently compatible with elevated temperature weathers. This improvement is accomplished via Smart Control System integrate with Proportional-Integral- Differential PID algorithm. The PIC16F877A micro-controller has been programmed with the PID and PWM c
... Show MoreThe main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-derivative (PID) co
... Show More
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-deriva
... Show MoreThe main focus of this research is to examine the Travelling Salesman Problem (TSP) and the methods used to solve this problem where this problem is considered as one of the combinatorial optimization problems which met wide publicity and attention from the researches for to it's simple formulation and important applications and engagement to the rest of combinatorial problems , which is based on finding the optimal path through known number of cities where the salesman visits each city only once before returning to the city of departure n this research , the benefits of( FMOLP) algorithm is employed as one of the best methods to solve the (TSP) problem and the application of the algorithm in conjun
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreThe research problem has crystallized and in light of these capabilities, the level of performance depends on the application of modern training methods based on actual experimentation, and those methods aim to develop the components of achievement in this competition, including the quantities of exerting the distinctive strength with speed for the arms and feet, which reflects on good skillful performance because the skill of shooting by jumping forward and high forms A major role in achieving goals during the competition that qualifies the team to win, and through the follow-up of the researcher in the field and academic field, I noticed that there is a weakness in some physical abilities, which affects performance and skill level
... Show More
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show More