Creep testing is an important part of the characterization of composite materials. It is crucial to determine long-term deflection levels and time-to-failure for these advanced materials. The work is carried out to investigate creep behavior on isotropic composite columns. Isotropy property was obtained by making a new type of composite made from a paste of particles of carbon fibers mixed with epoxy resin and E-glass particles mixed with epoxy resin. This type of manufacturing process can be called the compression mold composite or the squeeze mold composite. Experimental work was carried out with changing the fiber concentration (30, 40 and 50% mass fraction), cross section shape, and type of composite. The creep results showed that the higher the fiber concentration, the more the creep resistance. Type of fiber plays a very critical role, where carbon/epoxy composite showed much higher creep resistance and also showed much higher modulus of elasticity than the E-glass/epoxy composite. Specimen shape factor noticed to play a very small role. However, square cross sectional area showed slightly higher resistance for creep than the rectangular cross sectional area. This difference is not critical and can be ignored. F.E.M simulation with ANSYS Inc. software was implied and results were compatible with the experimental work with a maximum discrepancy of (17.24%).
We have studied theoretically the response of atomic three- level cascade scheme
of rubidium vapor to a strong laser under conditions in which electromagnetically
induced transparency would be induced on a weak probe beam. We show that the
medium that is an opaque to a probe laser can, by applying both lasers
simultaneously, be made transparent.
In this work, two groups of nanocomposite material, was prepared from unsaturated polyester resin (UPE), they were prepared by hand lay-up method. The first group was consisting of (UPE) reinforced with individually (ZrO2) nanoparticles with particle size (47.23nm). The second group consists of (UPE) reinforced with hybrid nanoparticles consisting of zirconium oxide and yttrium oxide (70% ZrO2 + 30% Y2O3) with particles size (83.98nm). This study includes the effect of selected volume fraction (0.5%, 1%, 1.5%, 2%, 2.5%, 3%) for both reinforcement nano materials. Experimental investigation was carried out by analyzing the thermo-physical properties like thermal conductivity, thermal diffusivity and specific heat for the polymeric composit
... Show MoreIn this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid) flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity a
... Show MoreThe aim of this paper is to evaluate the rate of contamination in soils by using accurate numerical method as a suitable tool to evaluate the concentration of heavy metals in soil. In particular, 2D –interpolation methods are applied in the models of the spread the metals in different direction.The paper illustrates the importance of the numerical method in different applications, especially nvironment contamination. Basically, there are many roles for approximating functions. Thus, the approximating of function namely the analytical expression may be expressed; the most common type being is polynomials, which are the easy implemented and simplest methods of approximation. In this paper the divided difference formula is used and extended
... Show MoreJournal of Physics: Conference Series PAPER • THE FOLLOWING ARTICLE ISOPEN ACCESS Estimate the Rate of Contamination in Baghdad Soils By Using Numerical Method Luma Naji Mohammed Tawfiq1, Nadia H Al-Noor2 and Taghreed H Al-Noor1 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 1294, Issue 3 Citation Luma Naji Mohammed Tawfiq et al 2019 J. Phys.: Conf. Ser. 1294 032020 DOI 10.1088/1742-6596/1294/3/032020 DownloadArticle PDF References Download PDF 135 Total downloads 88 total citations on Dimensions. Turn on MathJax Share this article Share this content via email Share on Facebook (opens new window) Share on Twitter (opens new window) Share on Mendeley (opens new window) Hide article and author
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreDue to its safety, low cost, real-time nature, and widespread availability, ultrasound has been employed as a diagnostic technique for numerous intraocular disorders. Unfortunately, speckle artifact that depends on the tissue is seen in ultrasound imaging. In this study, we present a technique for lowering speckle noise and enhancing ultrasound images to enhance human diagnostic performance. This technique combines the undecimated wavelet transform (UDWT) with a wavelet coefficient mapping function, which was utilized to improve the contrast of the denoised images acquired from the first component after the noise was removed using the UDWT. This technique can be used to enhance the visual quality of medical photographs as well as to enha
... Show MoreIn this manuscript divide into two parts the first experimental and the second theoretical. The experimental part of polyvinyl chloride (PVC) can be used with aluminum (30%). Nanomaterials are synthesized by a laser pulse melting solution by ethanol. The effect of laser on the structural, morphological, optical, and electrical properties of nanoparticles (PVC) was examined by UV spectroscopy, x-ray diffraction (XRD), electron microscopy (TEM). The theoretical part of the DFT can be used to approximate the generalized gradient of the Perdew, Burke, and Ernzerhof (PBE) / 6-31G (d) groups, which were created using additional Gaussian 09 software through Gaussian 5.08. To build PVC nanocrystal pure which chemical formula [(C2H3Cl)n] and build (
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show More