Various speech enhancement Algorithms (SEA) have been developed in the last few decades. Each algorithm has its advantages and disadvantages because the speech signal is affected by environmental situations. Distortion of speech results in the loss of important features that make this signal challenging to understand. SEA aims to improve the intelligibility and quality of speech that different types of noise have degraded. In most applications, quality improvement is highly desirable as it can reduce listener fatigue, especially when the listener is exposed to high noise levels for extended periods (e.g., manufacturing). SEA reduces or suppresses the background noise to some degree, sometimes called noise suppression algorithms. In this research, the design of SEA based on different speech models (Laplacian model or Gaussian model) has been implemented using two types of discrete transforms, which are Discrete Tchebichef Transform and Discrete Tchebichef-Krawtchouk Transforms. The proposed estimator consists of dual stages of a wiener filter that can effectively estimate the clean speech signal. The evaluation measures' results show the proposed SEA's ability to enhance the noisy speech signal based on a comparison with other types of speech models and a self-comparison based on different types and levels of noise. The presented algorithm's improvements ratio regarding the average SNRseq are 1.96, 2.12, and 2.03 for Buccaneer, White, and Pink noise, respectively.
One of the important differences between multiwavelets and scalar wavelets is that each channel in the filter bank has a vector-valued input and a vector-valued output. A scalar-valued input signal must somehow be converted into a suitable vector-valued signal. This conversion is called preprocessing. Preprocessing is a mapping process which is done by a prefilter. A postfilter just does the opposite.
The most obvious way to get two input rows from a given signal is to repeat the signal. Two rows go into the multifilter bank. This procedure is called “Repeated Row” which introduces oversampling of the data by a factor of 2.
For data compression, where one is trying to find compact transform representations for a
... Show MoreUnregulated epigenetic modifications, including histone acetylation/deacetylation mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), contribute to cancer progression. HDACs, often overexpressed in cancer, downregulate tumor suppressor genes, making them crucial targets for treatment. This work aimed to develop non‐hydroxamate benzoic acid–based HDAC inhibitors (HDACi) with comparable effect to the currently four FDA‐approved HDACi, which are known for their poor solubility, poor distribution, and significant side effects. All compounds were structurally verified using FTIR, 1HNMR, 13CNMR, and mass spectrometry. In silico ana
The azo ligand obtained from the diazotization reaction of 2-aminobenzothiazole and 4- nitroaniline yielded a novel series of complexes with Co(II), Ni(II), Cu(II), and Zn(II) ions. The complexes were investigated using spectral techniques such as UV-Vis, FT-IR, 1H and 13C NMR spectroscopic analyses, LC-MS and atomic absorption spectrometry, electrical conductivity, and magnetic susceptibility. The molar ratio of the synthesized compounds was determined using the ligand exchange ratio, which revealed the metal-ligand ratios in the isolated complexes were 1:2. The synthesized complexes were tested for antimicrobial activity against S. aureus, E. coli, C. albicans, and C. tropicalis bacterial species. Additionally, their binding affinities we
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreFusidic acid (FA) is a well-known pharmaceutical antibiotic used to treat dermal infections. This experiment aimed for developing a standardized HPLC protocol to determine the accurate concentration of fusidic acid in both non-ionic and cationic nano-emulsion based gels. For this purpose, a simple, precise, accurate approach was developed. A column with reversed-phase C18 (250 mm x 4.6 mm ID x 5 m) was utilized for the separation process. The main constituents of the HPLC mobile phase were composed of water: acetonitrile (1: 4); adjusted at pH 3.3. The flow rate was 1.0 mL/minute. The optimized wavelength was selected at 235 nm. This approach achieved strong linearity for alcoholic solutions of FA when loaded at a serial concentrati
... Show MoreIn this work , an effective procedure of Box-Behnken based-ANN (Artificial Neural Network) and GA (Genetic Algorithm) has been utilized for finding the optimum conditions of wt.% of doping elements (Ce,Y, and Ge) doped-aluminizing-chromizing of Incoloy 800H . ANN and Box-Behnken design method have been implanted for minimizing hot corrosion rate kp (10-12g2.cm-4.s-1) in Incoloy 800H at 900oC . ANN was used for estimating the predicted values of hot corrosion rate kp (10-12g2.cm-4.s-1) . The optimal wt.% of doping elements combination to obtain minimum hot corrosion rate was calculated using genetic alg
... Show More