To achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios (20, 40, 60, and 120). At 7, 28, and 60 days after typical curing, the samples' mechanical characteristics (compressive strength, flexural strength, and split tensile strength) are assessed. A reported increase in compressive strength of (2, 1.6, and 1.4) in (7, 28, and 60 days) for concrete with a high aspect ratio 120, compared to concrete with a low aspect ratio 20. The flexural strength of high-strength green concrete with fibers of a higher aspect ratio 120 was (23, 11, and 12.6%) times higher for all ages compared to low aspect ratio 20. The split tensile strength rose (1.7, 1.5, and 1.6%) for (7, 28, and 60 days), respectively, for concrete with a high aspect ratio 120, compared to concrete with a low aspect ratio 20. It was found that using fibers with a large aspect ratio improved the mechanical properties of concrete more than fibers with a small aspect ratio.
Grass carp at a weight of 34.68 + 2 g were gradually exposed to four saline concentrations: tap water (0.1), 3, 6, 9, and 12 gm/litter, and the first concentration represented a control treatment. Fish were fed on a diet with a protein content of 30% for ten weeks. Results of the growth experiment showed that the feed conversion rate was 2.46, 3.58, 4.84, 6.77, and -8.56 in the first to fifth treatments, respectively, and the rate feed conversion efficiency was 40.65, 27. 93, 20.66, 14.77 and 11.68 %, while the protein intake was 22.38, 20.44, 18.86, 17.47 and 16.56 g in salt concentrations of 0.1, 3, 6, 9 and 12 g/L, respectively. In another experiment to study the effect of salt acc
Hydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined. There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements. The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more accurate t
... Show MoreThis study was conducted in an orchard pomegranate's Department of Horticulture College of Agriculture, University of Baghdad for two seasons 1999-2000 on cultivars pomegranate Salimi and narrators seedless to study the effect spraying Nizant growth in sex ratio of flowers and recipes flowering and winning was selected 27 trees per class 15 years old planted
his study aimed to investigate the usability of Recycled Concrete Aggregate (RCA) in warm mix asphalt (WMA) as the implementation of sustainable construction technology. Five replacement rates (0%, 25%, 50%, 75%, and 100%) were tested for the coarse fraction of virgin aggregate (VA) with 3 types of RCA: untreated RCA, HL-treated RCA, and HCL-treated RCA. Scanning electron microscopy (SEM) analyses were performed to investigate the surface morphology for both treated and untreated RCA. The optimum asphalt cement content for every substitution rate was determined using Marshall mix design method. Thereafter, asphalt concrete specimens were prepared using the optimum asphalt cement content, followed by the evaluation of their performance prope
... Show MoreBackground: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group,
... Show MoreIntroduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). F
... Show MoreHigh temperature superconductors materials with composition Bi1.6-xSbxPb0.4Sr2Ca2-yCdyCu3OZ (x = 0, 0.1, 0.2 and 0.3) and (y = 0.01 and 0.02), were prepared by using the chemical reaction in solid-state ways, and test influence of partial replacement of Bi and Ca with Sb and Cd respectively on the superconducting properties, all samples were sintered at the same temperature (850 oC) and for the same time (195 h). The structural analysis of the prepared samples was carried out using X-ray diffraction (XRD) measurements performed at room temperature, scanning electron microscope (SEM) and dc electrical resistivity was measured as a function of temperature. It was found that the sample prepared by partial substitution of Sb at ratio (x= 0.2
... Show MoreThe adhesion strength between Polyethylene (PE) film and Aluminum surface by using the adhesive material (Cyanoacrylate) has been studied. Aluminum (Al) was used as a substrate, and polyethylene (PE) was used as a film adhered to the Al surface. Standard specimens were prepared to use in the peeling test in dry condition, other specimens were immersed in water for 12 days at room temperature. the results for the specimens in the dry condition had shown that high value in the peel force and the peel energy, the peel force was 0.38*103 N/m and the peel energy was 0.605*103 N/m, peeling the film from Al surface leaves a residual of the adhesive material on both adherend, the failure for this specimen were combination of adhesive and cohesive f
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show More