To achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios (20, 40, 60, and 120). At 7, 28, and 60 days after typical curing, the samples' mechanical characteristics (compressive strength, flexural strength, and split tensile strength) are assessed. A reported increase in compressive strength of (2, 1.6, and 1.4) in (7, 28, and 60 days) for concrete with a high aspect ratio 120, compared to concrete with a low aspect ratio 20. The flexural strength of high-strength green concrete with fibers of a higher aspect ratio 120 was (23, 11, and 12.6%) times higher for all ages compared to low aspect ratio 20. The split tensile strength rose (1.7, 1.5, and 1.6%) for (7, 28, and 60 days), respectively, for concrete with a high aspect ratio 120, compared to concrete with a low aspect ratio 20. It was found that using fibers with a large aspect ratio improved the mechanical properties of concrete more than fibers with a small aspect ratio.
The purpose of this paper is to identifying the values of some physical and Bio- Kinematic variables during the performance of the jump spike serve skill, and identifying the effect of the proposed training program using intermittent training to develop some physical and Bio- Kinematic variables and accuracy of the jump spike serve skill among the research sample. The experimental method was used and the research was conducted on a deliberately chosen sample of the players of the Army Club, who were primarily advanced in volleyball, and the number of the sample was (10) players. The conclusions were reached that the proposed training program using intermittent training has a positive effect on some of the physical and Bio- Kinematic variabl
... Show MoreOrthophoto provides a significant alternative capability for the presentation of architectural or archaeological applications. Although orthophoto production from airphotography of high or lower altitudes is considered to be typical, the close range applications for the large-scale survey of statue or art masterpiece or any kind of monuments still contain a lot of interesting issues to be investigated.
In this paper a test was carried out for the production of large scale orthophoto of highly curved surface, using a statue constructed of some kind of stones. In this test we use stereo photographs to produce the orthophoto in stead of single photo and DTM, by applying the DLT mathematical relationship as base formula in differenti
... Show MoreAbstract
The research aims to determine the nature of the Iraqi market in terms of banking financial stability and the extent impact of the operational efficiency on it, Accordingly, chosen 15 relational banks were chosen as an intentional sample that could represent the Iraqi banking system for the period 2010-2020. The operational efficiency variable was measured according to the data envelope model, and banking financial stability used CAMELS model which includes five indicators (capital adequacy, asset quality, management quality, profitability, and liquidity), so for testing the research hypotheses used the random regression model by adopting the S
... Show MorePhotonic crystal fiber interferometers are used in many sensing applications. In this work, an in-reflection photonic crystal fiber (PCF) based on Mach-Zehnder (micro-holes collapsing) (MZ) interferometer, which exhibits high sensitivity to different volatile organic compounds (VOCs), without the needing of any permeable material. The interferometer is robust, compact, and consists of a stub photonic crystal fiber of large-mode area, photonic crystal fiber spliced to standard single mode fiber (SMF) (corning-28), this splicing occurs with optimized splice loss 0.19 dB In the splice regions the voids of the holey fiber are completely collapsed, which allows the excitation and recombination of core and cladding modes. The device reflection
... Show MoreThe refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core
... Show MoreA simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ
... Show MoreThe Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the
... Show MoreMJ Abbas, AK Hussein, Journal of Physical Education, 2019