The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one dimensional temperature
distribution with the analytical results.
A general mathematical model for a fixed bed immobilized enzyme reactor was developed to simulate the process of diffusion and reaction inside the biocatalyst particle. The modeling and simulation of starch hydrolysis using immobilized
Soft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water. In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils. Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted
... Show MoreThe modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show MoreThe applications of mobile robots in rescue scenarios, surviving to search, and exploration for outdoor navigation have received increasing attention due to their promising prospects. In this paper, a simulation of a differential wheeled mobile robot was presented, implementing a Global Positioning System (GPS) data points to specified starting points, final destination, and total error.
In this work, a simple kinematic controller for polar coordinate trajectory tracking is developed. The tracking between two points, pose to pose, was specified by using the GPS data points. After that, the geodesy (GEO) formulation was used to convert the geodesy coordinate to Euclidean or polar coordinate. The Haversine equation
... Show MoreThe finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreFoundations supporting reciprocating engines, radar towers, turbines, large electric motors, and generators, etc. are subject to vibrations caused by unbalanced machine forces as well as the static weight of the machine. If these vibrations are excessive, they may damage the machine or cause it not to function properly. In the case of block foundation, if changes in size and mass of the foundation do not lead to a satisfactory design, a pile foundation may be used. In this study, the dynamic response of piles and pile Groups in dry sand is investigated experimentally. The analysis involves the displacement response under harmonic excitation. In addition, a numerical modeling by using finite element method with a three-dimensional formula
... Show More<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>