Roller compacted concrete (RCC) is a concrete compacted by roller compaction. The concrete mixture in its unhardened state must support a roller while being compacted. The aim of this research work was to investigate the behavior and properties of roller compacted concrete when constructed in the laboratory using roller compactor manufactured in local market to simulate the field conditions. The roller compaction was conducts in three stages; each stage has different loading and number of passes of the roller. For the first stage, a load of (24) kg and (5) passes in each direction had been employed. For the second stage, a load of (104) kg and (10) passes in each direction were conducted. Finally, at the third stage, a load of (183) kg and (15) passes were adopted. Such procedure was in accordance to previous work conducted by the author. The effects of the type of coarse aggregate (crushed and rounded), fine aggregate (river and natural) and cement type (OPC and SRPC) on the mechanical properties of RCC were investigated. The effect of compaction method on compressive strength and indirect tensile strength was also discussed. A total of (26) roller compacted concrete slab samples of (380×380×100 mm) were prepared in the laboratory, Then, the slab specimens are taken out of the molds and immersed in the curing tank for (28) days. Core and Beam specimens were obtained from the slab samples for the determination of mechanical properties. Such properties include compressive, indirect tensile, flexural strengths using one point loading. It was concluded that the compressive strength of RCC using crushed aggregate is higher than that when using rounded aggregate in a range of (15-66) % for core specimens, while the compressive strength of RCC when using river sand is higher than that when using natural sand in a range of (9-26)% for core specimens. When river sand is implemented, RCC samples show higher indirect tensile strength than those with natural sand, such variation is within (7-8) %
A new approach for baud time (or baud rate) estimation of a random binary signal is presented. This approach utilizes the spectrum of the signal after nonlinear processing in a way that the estimation error can be reduced by simply increasing the number of the processed samples instead of increasing the sampling rate. The spectrum of the new signal is shown to give an accurate estimate about the baud time when there is no apriory information or any restricting preassumptions. The performance of the estimator for random binary square waves perturbed by white Gaussian noise and ISI is evaluated and compared with that of the conventional estimator of the zero crossing detector.
A new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.
This paper proposes a new password generation technique on the basis of mouse motion and a special case location recognized by the number of clicks to protect sensitive data for different companies. Two, three special locations click points for the users has been proposed to increase password complexity. Unlike other currently available random password generators, the path and number of clicks will be added by admin, and authorized users have to be training on it.
This method aims to increase combinations for the graphical password generation using mouse motion for a limited number of users. A mathematical model is developed to calculate the performance
Slurry infiltrated fibrous concrete (SIFCON) is a modern type of fibre reinforced concrete (FRC). It has unique properties; SIFCON is superior in compressive strength, flexural strength, tensile strength, impact resistance, energy absorption and ductility. Because of this superiority in these characteristics, SIFCON was qualified for applications of special structures, which require resisting sudden dynamic loads such as explosions and earthquakes. The main aim of this investigation is to determine the effect of fibre type on the apparent density of SIFCON and on performance under impact load. In this investigation, hook-end steel fibre and polyolefin fibre were used. Purely once and
This research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3
... Show MoreThe reuse or recycling of waste materials in different aspects of life is served the objective of sustainability and be beneficial to society. In recent years, a wide variety of waste materials were used in pavement construction. One of these materials is glass that generally produces in large quantities and crushed glass can be considered feasible alternative source of aggregate for asphalt mixture production. This study focused on examining the asphalt mixture properties of wearing course using crushed glass as fine aggregates. Fine crushed glass with various percentages by total weight retained on sieve 2.36 mm, 0.3 mm and 0.075 mm was used in the study. The results indicate that mixes containing crushed glass had lower Marshall stabilit
... Show MoreThe construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop
... Show MoreThis study presents an investigation about the effect of fire flame on the punching shear strength of hybrid fiber reinforced concrete flat plates. The main considered parameters are the fiber type (steel or glass) and the burning steady-state temperatures (500 and 600°C). A total of 9 half-scale flat plate specimens of dimensions 1500mm×1500mm×100mm and 1.5% fiber volume fraction were cast and divided into 3 groups. Each group consisted of 3 specimens that were identical to those in the other groups. The specimens of the second and the third groups were subjected to fire flame influence for 1 hour and steady-state temperature of 500 and 600°C respectively. Regarding the cooling process, water sprinkling was applied directly aft
... Show MoreMaterial obtained from the demolition of concrete structures and milling of flexible pavements has the highest potential for recyclability. This study aimed to evaluate the performance of hot mix asphalt with the concurrent use of recycled asphalt pavement (RAP) and recycled concrete aggregate (RCA). Contents of RAP and RCA were varied from 0% to 50% by fixing the total recycling materials percentage to 50%. Penetration grade 40/50 virgin binder and waste engine oil (WEO) as rejuvenator were used in the present study. A series of tests, such as Scanning electron microscopy (SEM), Marshall stability, indirect tensile strength test, IDEAL CT, uniaxial compression test, and resilient modulus test, were carried out to assess the performance of
... Show More