The effect of applied current on protection of carbon steel in 0.1N NaCl solution (pH=7) was investigated under flow conditions (0-0.262 m/s) for a range of temperatures (35-55°C) using rotating cylinder electrode. Various values of currents were applied to protect steel from corrosion, these were Iapp.=Icorr., Iapp.=2Icorr. and Iapp.=2.4Icorr. under stationary and flow conditions. Corrosion current was measured by weight loss method. The variation of protection potential with time and rotation velocity at various applied currents was assessed. It is found that the corrosion rate of carbon steel increases with rotation velocity and
has unstable trend with temperature. The protection current required varies with temperature and it increases considerably when the rotation velocity was increased. The protection potential decreases appreciably (shifts to more negative) with time and with increasing rotation velocity. Also it shifts to more positive with increasing temperature.
The corcosion behoviour of Aluminum bronze in sodium chloride solution has been studied ^tentiostatically at five temperatures in the range 293-313K.The corrosion potential shifted to more negative values with increasing temperature. The corrosion current density increased with increasing temperature. Values of Tal'el slopes and the transfer coefficients indicated hydrogen evolution reaction to occur at the cathode and mainly the dissolution at the anode.Benzotriazole (BTA) had an inhibiting effect ??? the corrosion of the Al-bronze in deaerated NaCl solution at a concentration (1*10'?- IxlO‘1) mol dm'^ over the temperature range 293-313K. Values of the protection efficiency and kinetics parameters were obtained from the corrosion current
... Show MoreIn this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this stud
... Show MoreIn this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreThe aim of this research is to study the effect of high concentrations of salts, pressure and temperature on the performance of the RO membrane with time. Four different (Na2CO3) concentrations (5000, 15000, 25000 and 35000) ppm and various pressures such as (1, 3 and 5) bars at different temperatures of the feed solution (i.e., 25, 35 and 45) ◦C were used in this work. It was found that, as the concentration of salt and feed temperatures increase, the rejection of the salt decrease. While the salt rejection of the membranes increases with increase of transmembrane pressure.
Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie
Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show MoreA vector in a separable infinite dimensional Hilbert space is called disk-cyclic for bounded operator if the orbit α : 0, α∈;|∝| 1is dense in. The useful tool used to discover codisk-cyclic operation is called the disk-cyclic Criterion. In this paper we will show that some equivalent conditions of the
In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac
... Show More