The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modified to achieve QoS using Artificial Intelligence (AI) and machine learning (ML). Developing an intelligent decision-making system for network management and reducing network slice failures requires reconfigurable wireless network solutions with machine learning capabilities. Using Spiking Neural Network (SNN) and prediction, we have developed a 'Buffer-Size Management' model for controlling network load efficiency by managing the slice's buffer size. To analyze incoming traffic and predict the network slice buffer size; our proposed Buffer-Size Management model can intelligently choose the best amount of buffer size for each slice to reduce packet loss ratio, increase throughput to 95% and reduce network failure by about 97%.
In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThe dimensions of bubbles were measured in a stirrer tank electrochemical reactor, where the analysis of the bubble size distribution has a substantial impact on the flow dynamics. The high-speed camera and image processing methods were used to obtain a reliable photo. The influence of varied air flow rates (0.3; 0.5; 1 l/min) on BSD was thoroughly investigated. Two types of distributors (cubic and circular) were examined, and the impact of various airflow rates on BSD was investigated in detail. The results showed that the bubbles for the two distributors were between 0.5 and 4.5 mm. For both distributors at each airflow, the Sauter mean diameter for the bubbles was calculated. According to the results, as the flow rate raised, the bubb
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie
... Show MoreArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto
... Show MoreDiyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreThe research addresses smart city concept as it is the latest urban design trends, by the investment of the capabilities of human, and artificial intelligence for the sake of the advancement of the city. The concept of a smart city is described as one of the most important manifestations of the information revolution, with the end of the twentieth, and the beginning of twenty – first century, The research attributes the emergence of the concept to: deficiencies of means, and traditional methods in building and development of cities, as well as The significant increase in the number of city and global metropolises dwellers. So, smart city approach has been adopted, along with innovative principles and methods which cons
... Show More