One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our cameras system to capture the images and upload them to the Amazon Simple Storage Service (AWS S3) cloud. Then two detectors were running, Haar cascade and multitask cascaded convolutional neural networks (MTCNN), at the Amazon Elastic Compute (AWS EC2) cloud, after that the output results of these two detectors are compared using accuracy and execution time. Then the classified non-permission images are uploaded to the AWS S3 cloud. The validation accuracy of the offline augmentation face detection classification model reached 98.81%, and the loss and mean square error were decreased to 0.0176 and 0.0064, respectively. The execution time of all AWS cloud systems for one image when using Haar cascade and MTCNN detectors reached three and seven seconds, respectively.
The growing water demand has raised serious concerns about the future of irrigated agriculture in many parts all over the world, changing environmental conditions and shortage of water (especially in Iraq) have led to the need for a new system that efficiently manages the irrigation of crops. With the increasing population growing at a rapid pace, traditional agriculture will have a tough time meeting future food demands. Water availability and conservation are major concerns for farmers. The configuration of the smart irrigation system was designed based on data specific to the parameters concerning the characteristics of the plant and the properties of soil which are measured once i
This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show Moreplanning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreThis paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
<p>Recently, reconfigurable intelligent surfaces have an increasing role to enhance the coverage and quality of mobile networks especially when the received signal level is very weak because of obstacles and random fluctuation. This motivates the researchers to add more contributions to the fields of reconfigurable intelligent surfaces (RIS) in wireless communications. A substantial issue in reconfigurable intelligent surfaces is the huge overhead for channel state information estimation which limits the system’s performance, oppressively. In this work, a newly proposed method is to estimate the angle of arrival and path loss at the RIS side and then send short information to the base station rather than huge overhe
... Show MoreHomomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show MoreAkaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).