Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's performance was evaluated, and tests were run. Line-to-ground faults were examined. The study demonstrates how effective, rapid, and precise this method is at locating faults. The neural network's performance was examined, and tests were run on it. The overall performance of the mean square error in the trained network execution was 0.11792 at 35 epochs. The correlation coefficient at the entire target was 0.99987 percent of an error on the Doukan-Erbil double transmission lines.
New nitrone and selenonitrone compounds were synthesized. The condensation method between N-(2-hydroxyethyl) hydroxylamine and substituted carbonyl compounds such as [benzil, 4, 4́-dichlorobenzil and 2,2́ -dinitrobenzil] afforded a variety of new nitrone compounds while the condensation between N-benzylhydroxylamine and substituted selenocarbonyl compounds such as [di(4-fluorobenzoyl) diselenide and (4-chlorobenzoyl selenonitrile] obtained selenonitrone compounds. The condensation of N-4-chlorophenylhydroxylamine with dibenzoyl diselenide obtained another type of selenonitrone compounds. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR,
... Show MoreMany researchers consider Homogeneous Charge Compression Ignition (HCCI) engine mode as a promising alternative to combustion in Spark Ignition and Compression Ignition Engines. The HCCI engine runs on lean mixtures of fuel and air, and the combustion is produced from the fuel autoignition instead of ignited by a spark. This combustion mode was investigated in this paper. A variable compression ratio, spark ignition engine type TD110 was used in the experiments. The tested fuel was Iraqi conventional gasoline (ON=82).
The results showed that HCCI engine can run in very lean equivalence ratios. The brake specific fuel consumption was reduced about 28% compared with a spark ignition engine. The experimental tests showed that the em
... Show MoreThe electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d) basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured valu
... Show MoreDetergent is one of the pollutants that poses significant threats to ecological systems. Detergents can also dissolve in wastewater and negatively impact the efficiency of wastewater treatment facilities. They are used for a variety of functions, most notably hygiene, and are an integral aspect of human life. This means that there are a variety of routes by which detergent components can reach the environment. In this Study, twenty-three detergent samples from local markets in Baghdad. The aim of this study is to investigate the concentration of heavy metals Cobalt (Co), Chromium (Cr),Lead (Pb),Zinc (Zn), Iron (Fe) and Cadmium (Cd) in some detergents using Atomic Absorption Spectrophotometer. The results of the concentration of heavy elemen
... Show More