Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhances by applying the compound technique at all the working fluid's temperatures and flow rate ranges. The maximum increase in overall heat transfer coefficient occurs at an angle of 30° and the resonance frequency. Moreover, the effectiveness of the double pipe heat exchanger gradually expanded when temperature, inclination angles, and vibration amplitude rosed. But the effectiveness value declined as the hot working flow rate increased considerably. Finally, the enhancement factor demonstrated that the combined strategy (vibration frequencies and inclination angles) had been the most effective technique in improving and enhancing heat transfer and was superior to the other ways. Additionally, the extremes improvement in overall heat transfer coefficient, effectiveness, and enhancement factor are 183.4, 191, and 164.4 %. The improvement was situated at the resonance frequency with a 30° inclination angle.
due to the presence of chemoresistance and the risk of tumor recurrence and metastasis. There is a pressing necessity to develop efficient treatments to improve response for treatment and increase prolong survival of breast cancer patients. Photodynamic therapy (PDT) has attracted interest for its features as a noninvasive and relatively selective cancer treatment. This method relies on light-activated photosensitizers that, upon absorbing light, generate reactive oxygen species (ROS) with powerful cell-killing outcomes. Nuclear factor kappa B (NF-κB), a transcription factor, plays a key role in cancer development by regulating cell proliferation, differentiation, and survival. Inhibiting NF-κB can sensitize tumor cells to chemotherapeuti
... Show MoreIn the era of the digital economy, public organizations need to consolidation the capabilities of entrepreneurial alertness to reduce the risks of sudden transformations and changes, and to find effective mechanisms to discover and invest in environmental opportunities proactively, as this concern has become a knowledge gap in public sector institutions, the current research aims to identify the role of digital competence in influencing on entrepreneurial alertness in the Central Bank of Iraq (CBI), the descriptive analytical approach was used as a research method to describe and analyze the main research variables. digital competence as an explanatory variable includes three dimensions: digital infrastructure, digital integration, and d
... Show MoreIn this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical propert
... Show More3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo
... Show MoreThis study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and