Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhances by applying the compound technique at all the working fluid's temperatures and flow rate ranges. The maximum increase in overall heat transfer coefficient occurs at an angle of 30° and the resonance frequency. Moreover, the effectiveness of the double pipe heat exchanger gradually expanded when temperature, inclination angles, and vibration amplitude rosed. But the effectiveness value declined as the hot working flow rate increased considerably. Finally, the enhancement factor demonstrated that the combined strategy (vibration frequencies and inclination angles) had been the most effective technique in improving and enhancing heat transfer and was superior to the other ways. Additionally, the extremes improvement in overall heat transfer coefficient, effectiveness, and enhancement factor are 183.4, 191, and 164.4 %. The improvement was situated at the resonance frequency with a 30° inclination angle.
The measurement of vitamin B1 in pure and pharmaceutical formulations was proposed by using a straightforward and sensitive spectrophotometric approach. Sulfacetamide (SFA) is diazotized, then coupled with vitamin B1 in alkaline media to produce a colored azo dye complex with a stability constant of 5.597 × 105 L/mol. The product is stable, with a maximum absorption wavelength of 489.5 nm, molar absorptivity of 10108 L/mol∙cm, Sandell's sensitivity of 0.0334 μg/cm2, detection limit of 0.0135 μg/mL, and Beer's law being observed over the concentration range of 0.2–20.0 μg/mL. The stability constant and stoichiometry of the produced azo dye were calculated using the continuous variation (Job's) and mole ratio methods. The suggested ap
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS) has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity electrical resistivity and lesser absorption than fiber reinforced
... Show MoreHypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid conce
... Show MoreThe presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti
... Show MoreIn this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreAnaerobic digestion is a technology widely used for treatment of organic waste for biogas production as a source for clean energy. In this study, poultry house wastes (PHW) material was examined as a source for biogas production. The effects of inoculum addition, pretreatment of the substrate, and temperature on the biogas production were taken into full consideration. Results revealed that the effect of inoculum addition was more significant than the alkaline pretreatment of raw waste materials. The biogas recovery from inoculated waste materials exceeds its production from wastes without inoculation by approximately 70% at mesophilic conditions. Whereby, the increase of biogas recovery from pretreated wastes was by 20% higher than its
... Show MoreThe issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r
... Show More