Nanoparticles are defined as an organic or non-organic structure of matter in at least one of its dimensions less than 100 nm. Nanoparticles proved their effectiveness in different fields because of their unique physicochemical properties. Using nanoparticles in the power field contributes to cleaning and decreasing environmental pollution, which means it is an environmentally friendly material. It could be used in many different parts of batteries, including an anode, cathode, and electrolyte. This study reviews different types of nanoparticles used in Lithium-ion batteries by collecting the advanced techniques for applying nanotechnology in batteries. In addition, this review presents an idea about the advantages and disadvantages of using nanoparticles in batteries to harness energy without harming the environment. This review showed that applying nanotechnology and using nanoparticles in the production technique of batteries open the field for developing energy storage in Nano sized batteries. This, in turn, is important in the new era of technology in the industries of electronic devices and precision electrical appliances such as mobile phones, digital cameras, etc.
The term of heterocyclic chemistry focuses only on heterocyclic compounds, which consider as a percentage of organic chemistry, they equal to greater than sixty-five. These compounds are widely founded in nature and most of them are important to life. In the past few years, scientist fused on 1,2,4-triazoles and their condensed heterocyclic ring due to their medicinal significance, 1,2,4-triazole containing Sulphur atom is one of the important heterocyclic moieties due to its broad range of biological activities also their derivatives can accommodate one of the alternatives as electronic effect as exchanges of the electronic density (electron donating or withdrawing) groups ; for all what mentioned above they are consider as a core
... Show MoreRoller Compacted Concrete is a type of concrete that is environmentally friendly and more economical than traditional concrete. Roller Compacted Concrete is typically used for heavy-duty and specialist constructions, such as hydraulic structures and pavements, because of its coarse surface. The main difference between RCC and conventional concrete mixtures is that RCC has a more significant proportion of fine aggregates that allow compaction and tight packing. In recent years, it has been estimated that several million tons of waste demolished material (WDM) produced each year are directed to landfills worldwide without being recycled for disposal. This review aimed to study the literature about creating a Roller-Comp
... Show MoreSilver nanoparticles synthesized by different species
There is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreFive isolates of Gram negative bacteria (Klebsiella pneumoniae, Psuedomonas auroginosa, proteus mirabilis and two strains of E.coli) were in quested for the ability of bearing silver nanoparticles by using LB medium, all the isolates of bacteria were buttered brown color just as soon as mixed the supernatant of bacterial culture with AgNO3 solution, that refered the biosynthesis of Silver nanoparticles (Ag NPs). UV–visible spectrophotometer and Fourier transform infrared (FTIR) spectroscopy were utilized for estimation of (Ag NPs). The five isolates of bacteria were tendered to produce spontaneous mutants by using different kinds of antibiotics, Ampicillin put to use for making mutant in E.coli and Proteus mirabillis, while Pseudom
... Show MoreThis research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of
... Show MoreIn this study, Titanium Dioxide Nanoparticles were synthesized by an easy and eco-friendly technique (green synthesis) using green tea leaves (Camillia sinensis), Nanoparticles were analyzed using structural and optical analysis, the X-ray pattern showed that Titanium Dioxide NPs had a tetragonal structure with (Face Centered Tetragonal) FCT crystal structure, the UV-visible recorded an absorbance peak near 350 nm and calculated energy band gap was 3.5 eV, all measurements were proved the purity and Nano size of prepared Nanoparticles. Biochemical parameters evaluation also mentioned in this research, these analyzes showed that Titanium Dioxide nanoparticles in particular dose (50 mg/kg) have the ability to reduce blood glucose
... Show MoreInfrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector
... Show More