A long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacement and crack development, and the obtained outcomes demonstrate a good agreement with the experiments. The ratio of ultimate loads and deflection of the beams tested in the investigation to those of numerical models was 0.98 and 0.97, respectively. So, finite element analysis can be regarded as a behaviour-trustworthy technique for simulating the non-linear behaviour of prestressed concrete rafters with multi-openings from the point of view of complexity, hardly, time-keeping, human effort, and cost.
Abstract
This study was conducted by using soil map of LD7 project to interpret the
distribution and shapes of map units by using the index of compaction as an
index of map unit shape explanation. Where there were wide and varied
ranges of compaction index of map units, where the maximum value was
0.892 for MF9 map unit and the lower value was 0.010 for same map unit.
MF9 has wide range appearance of index of compaction after those indices
were statistically analyzed by using cluster analysis to group the similar
ranges together to ease using their values, so the unit MF9 was considered as
key map unit that appears in the soils of LD7 project which may be used to
expect another map units existence in area of
The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreTo promote sustainable steel-concrete composite structures, it is essential to develop special shear connectors that facilitate accelerated construction and deconstruction. A lockbolt demountable shear connector (LBDSC) was recently proposed. While the LBDSC has been evaluated using horizontal and vertical (standard) push-out tests, it is essential to further assess the disassembly mechanism and the positive flexural performance of prefabricated demountable composite beams (PDCBs) under both serviceability and ultimate limit states. Two full-scale test specimens of PDCBs with LBDSC were designed with partial shear connections and assessed using a three or four-point load beam setup under both cyclic and static monotonic loading conditions.
... Show More<p class="0abstract">The rapidly growing 3D content exchange over the internet makes securing 3D content became a very important issue. The solution for this issue is to encrypting data of 3D content, which included two main parts texture map and 3D models. The standard encryption methods such as AES and DES are not a suitable solution for 3D applications due to the structure of 3D content, which must maintain dimensionality and spatial stability. So, these problems are overcome by using chaotic maps in cryptography, which provide confusion and diffusion by providing uncorrelated numbers and randomness. Various works have been applied in the field of 3D content-encryption based on the chaotic system. This survey will attempt t
... Show MoreMost of the recent works related to the construction industry in Iraq are focused on investigating the validity of local raw materials as alternatives to the imported materials necessary for some practical applications, especially in thermal and sound insulation. This investigation includes the use of limestone dust as partial substitution of cement in combination with foam agent and silica fume to produce sustainable Lightweight Foam Concrete (LWFC). This study consists of two stages. In the first stage, trial mixes were performed to find the optimum dosage of foam agent. Limestone dust was used as a partial replacement for cement. Chemical analysis and fineness showed great similarity with cement. Many concrete mixes were prepared
... Show More
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreAbstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste
... Show More