Multi-belled piles are piles with enlarged ends; these piles have one or further bells at the lower third part of the pile. These piles are suitable for many soils with problems such as softening clay, the variation of groundwater table, expansive soils, black cotton soil, and loose sand. The current study reviewed the behavior of belled piles in multi-layer soils subjected to axial compression and pullout loading. The review covered the experimental and theoretical works on belled piles in multi-layered soils. These piles were subjected to static and dynamic loadings in compression and pullout cases. Most theoretical results focused on software such as PLAXIS 3D. The axial load applied on the piles comes from the upper structure built above these piles, and negative skin friction comes from groundwater. The results obtained from previous studies showed the validity of using such piles in different types of soil and multilayer soils. According to previous studies, this study aims to find all the things about the belled piles, including the best shape of the belled pile being the half cone and the worst state being when the bell is fully cone. The best number of belled piles is two bells because the bearing capacity increases when the number of bells increases but does not exceed two due to hard work and high cost. The best location of a bell is at the base of the pile. The current study showed that the bearing capacity increased from 40% to 73.75% compared with ordinary piles.
Free vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreBackground: Considering the antioxidant, anti-inflammatory, and antimicrobial properties of green tea, this study aimed to evaluate the histopathological effect of the sulcular irrigation of green tea extract in the treatment of experimental gingivitis in rabbit.
Materials and methods: For this experimental study, 45 male rabbits, separated in two groups, control non- irrigated group (5rabbits) and study group (40 rabbits), gingivitis induced by ligatures was packed subgingivally in the lower right central incisors of the experimental group for seven days. Then, the animals were randomly designated to two irrigated groups (20 rabbits
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreA novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show More