Multi-belled piles are piles with enlarged ends; these piles have one or further bells at the lower third part of the pile. These piles are suitable for many soils with problems such as softening clay, the variation of groundwater table, expansive soils, black cotton soil, and loose sand. The current study reviewed the behavior of belled piles in multi-layer soils subjected to axial compression and pullout loading. The review covered the experimental and theoretical works on belled piles in multi-layered soils. These piles were subjected to static and dynamic loadings in compression and pullout cases. Most theoretical results focused on software such as PLAXIS 3D. The axial load applied on the piles comes from the upper structure built above these piles, and negative skin friction comes from groundwater. The results obtained from previous studies showed the validity of using such piles in different types of soil and multilayer soils. According to previous studies, this study aims to find all the things about the belled piles, including the best shape of the belled pile being the half cone and the worst state being when the bell is fully cone. The best number of belled piles is two bells because the bearing capacity increases when the number of bells increases but does not exceed two due to hard work and high cost. The best location of a bell is at the base of the pile. The current study showed that the bearing capacity increased from 40% to 73.75% compared with ordinary piles.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More2-hydrazinylbenzo[d]thiazole compound [1] is produced from reaction of 2-mercapto-benzothiazole with hydrazine hydride in ethanol. Compound [1] reacted with maleic anhydride in DMF to produce (Z)-4-(2-(benzo[d] thiazol-2yl) hydrazinyl)-4-oxobut-2-enoic acid [compound (2)]. While the treatment of compound [2] with the ammonium persulfate (NH4)2S2O8 (as the initiator) in order to produce compound [3], then compound [3] reacted with thionyl chloride in benzene to produce compound [4], finally compound [4] reaction with various drugs: cephalexin, amoxicillin, sulfamethizole, elecoxib obtained polymers [5–8]. The structure of synthesized compounds identified by spectral data: fourier transform infrared (FTIR) and proton nuclear magneti
... Show MoreMulti-walled carbon nanotubes (MWCNTs) were functionalized by hexylamine (HA) in a promising, cost-effective, rapid and microwave-assisted approach. In order to decrease defects and remove acid-treatment stage, functionalization of MWCNTs with HA was carried out in the presence of diazonium reaction. Surface functionality groups and morphology of chemically-functionalized MWCNTS were characterized by FTIR, Raman spectroscopy, thermogravimetric analysis (DTG), and transmission electron microscopy (TEM). To reach a promising dispersibility in oil media, MWCNTs were functionalized with HA. While the cylindrical structures of MWCNTs were remained reasonably intact, characterization results consistently confirmed the sidewall-functionalization o
... Show MoreIn this study, the upgrading of Iraqi heavy crude oil was achieved utilizing the solvent deasphalting approach (SDA) and enhanced solvent deasphalting (e-SDA) by adding Nanosilica (NS). The NS was synthesized from local sand. The XRD result, referred to as the amorphous phase, has a wide peak at 2Θ= (22 - 23º) The inclusion of hydrogen-bonded silanol groups (Si–O–H) and siloxane groups (Si–O–Si) in the FTIR spectra. The SDA process was handled using n-pentane solvent at various solvent to oil ratios (SOR) (4-16/1ml/g), room and reflux temperature, and 0.5 h mixing time. In the e-SDA process, various fractions of the NS (1–7 wt.%) have been utilized with 61 nm particle size and 560.86 m²/g surface area in the presence of 12 m
... Show MoreThe inhibitory effect of acetone, ethanol, and aqueous extracts of ten medicinal plants on β-lactamase from Staphylococcus sciuri and Klebsiella pneumoniae was investigated in vitro by starch-iodine agar plate method. The results revealed the success of starch-iodine method for the detection of the inhibition of β-lactamase activity by the various extracts of each individual plant. The acetone extracts of Catharanthus roseus, Eucalyptus camaldulensis, and Schinus terebinthifolius induced an inhibitory effect on β-lactamase from Staphylococcus sciuri. On the other hand, acetone extracts from only Eucalyptus camaldulensis, and Schinus
... Show MoreSpatial Intelligence is a mental ability to understand and solve real-world problems. These visual-spatial representations are fundamental in learning various "STEM" topics, like digital drawing, art presentations, creating graphical representations, 2D designs. Opportunity to interact with real and/or virtual objects. It is a good opportunity in applying new techniques such as the augmenter, which is able to clarify mathematical tables, concepts and generalizations greatly to the visualization, understanding and mastery of concepts mathematically. The purpose of the research is to investigate impact of using AR technology in developing spatial intelligence for secondary school students, Baghdad. The quasi-experimental design was us
... Show MoreInflammatory bowel disease includes both Crohn’s disease and ulcerative colitis, is a chronic, progressive relapsing disease of gastrointestinal tract that require long-term treatment or maintenance therapy. Taking patient’s beliefs about the prescribed medication in consideration had been shown to be an important factor that affects compliance of the patient in whom having positive beliefs is a prerequisite for better compliance. The aim of the current study was to investigate and assess beliefs about medicines among a sample of Iraqi patients with inflammatory bowel disease and to determine possible association between these beliefs and some patient-specific factors.
This study is a cross-sectional study carried out o
... Show MoreThe gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content.
Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by u
... Show MoreThe present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show More