Multi-belled piles are piles with enlarged ends; these piles have one or further bells at the lower third part of the pile. These piles are suitable for many soils with problems such as softening clay, the variation of groundwater table, expansive soils, black cotton soil, and loose sand. The current study reviewed the behavior of belled piles in multi-layer soils subjected to axial compression and pullout loading. The review covered the experimental and theoretical works on belled piles in multi-layered soils. These piles were subjected to static and dynamic loadings in compression and pullout cases. Most theoretical results focused on software such as PLAXIS 3D. The axial load applied on the piles comes from the upper structure built above these piles, and negative skin friction comes from groundwater. The results obtained from previous studies showed the validity of using such piles in different types of soil and multilayer soils. According to previous studies, this study aims to find all the things about the belled piles, including the best shape of the belled pile being the half cone and the worst state being when the bell is fully cone. The best number of belled piles is two bells because the bearing capacity increases when the number of bells increases but does not exceed two due to hard work and high cost. The best location of a bell is at the base of the pile. The current study showed that the bearing capacity increased from 40% to 73.75% compared with ordinary piles.
Preserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.
... Show MoreAmygdalin (d-Mandelonitrile 6-O-β-d-glucosido-β-d-glucoside) and its semi synthetic product is Laetrile ( also called vitamin B17): a natural cyanogenic glycoside occurring in the seeds of some edible plants, such as bitter almonds and peaches. Early in the 19th century, Amygdalin was first isolated in 1830 by two French chemists, Robiquet and Boutron-Charlard, as active components in various fruit pits and raw nuts. However, the systematized study of vitamin B17 started when chemist Bohn (1802) discovered that a hydrocyanic acid is released during distillation of the water from bitter almonds. The various pharmacological effects of Laetrile include antiatherogenic, activity in renal fibrosis, pulmonary fibrosis, immune regulation, ant
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreThis paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.
The ability of beans (Phaseolus vulgaris L.) to uptake three pharmaceuticals (diclofenac, mefenamic acid and metronidazole) from two types of soil (clay and sandy soil) was investigated in this study to explore the human exposure to these pharmaceuticals via the consumption of beans. A pot experiment was conducted with beans plants which were grown in two types of soil for six weeks under controlled conditions. During the experiment period, the soil pore water was collected weekly and the concentrations of the test compounds in soil pore water as well as in plant organs (roots, stems and leaves) were weekly determined.
The results showed that the studied pharmaceuticals were detected in all plant tissues; their concentration
Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More