This work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by surface roughness value Ra and Metal Removal MR rate. The results obtained by the DOE approach are analyzed by STATISTICA software. It has been concluded that an increase in the current and pulse duration maximizes both metal removal rate and surface roughness. At the same time, they are minimized by maximizing the pulse pause interval.
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.
Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c
... Show MoreToxoplasmosis is a parasitic infection that triggers immune cells to produce cytokines and inflammatory mediators that are responsible for abnormal or aborted immune responses. This study highlights the evaluation of the Dectin-1 receptor and cytokine IL-37 in the serum of 80 patients who had miscarried in the first trimester and were infected with toxoplasmosis, as well as 40 pregnant women in the first trimester who had a successful pregnancy (control groups). The serum was first screened for the T. gondii IgM and IgG antibodies by an enzyme-linked immunosorbent assay (ELISA) and then the serum levels of IL-37 and Dectin-1 were determined. The results showed that the serum level of Dectin-1 was significantly increased in anti-
... Show MoreThe steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortr
... Show MoreThe steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran
... Show MoreThe research dealt with a comparative study between some semi-parametric estimation methods to the Partial linear Single Index Model using simulation. There are two approaches to model estimation two-stage procedure and MADE to estimate this model. Simulations were used to study the finite sample performance of estimating methods based on different Single Index models, error variances, and different sample sizes , and the mean average squared errors were used as a comparison criterion between the methods were used. The results showed a preference for the two-stage procedure depending on all the cases that were used
Abstract : Objectives: The aims of the study are to identify the condition causes respiratory failure in both sex and to find out the relationship between prognosis and mortality rate with condition causes respiratory failure. Methodology : Descriptive study was carried out in Al- Yarmook Hospital in Respiratory care Unit in Baghdad from the 1st of August 2003 to 1st of August 2004, the sample consist of 300 patients (150) males and (150) females, descriptive and inferential statistics procedures were applied to the data analysis Results : The results shows that 24.4% of patients effect by post-operative compl
Artificial roughness on the absorber plate of a Solar Air Heater (SAH) is a popular technique for increasing its effective efficiency. The study investigated the effect of geometrical parameters of discrete multi-arc ribs (DMAR) installed below the SAH absorber plate on the effective efficiency. The effects of major roughness factors, such as number of gaps (Ng = 1-4), rib pitch (p/e = 4-16), rib height (e/D = 0.018-0.045), gab width (wg/e = 0.5-2), angle of attack ( = 30-75), and Reynolds number (Re= 2000-20000) on the performance of a SAH are studied. The performance of the SAH is evaluated using a top-down iterative technique. The results show that as Re rises, SAH-effective DMAR's efficiency first ascends to a specified value o
... Show MoreThe study focused on the treatment of real oilfield produced water from the East Baghdad field affiliated to the Midland Oil Company (Iraq) using an oil skimming process followed by a coagulation/flocculation process for zero liquid discharge system applications. Belt type oil skimmer was utilized for evaluating the process efficiency with various operating conditions such as temperature (17-40 °C) and time (0.5-2.5 hr.). Polyaluminum chloride (PAC) coagulant and polyacrylamide (PAM) flocculant was used to investigate the performance of the coagulation/flocculation process with PAC dosage (5-90 ppm) and pH (5-10) as operating conditions. In the skimming process, the oil content, COD, turbidity, and TSS decreased with an increase in tempera
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.