This work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by surface roughness value Ra and Metal Removal MR rate. The results obtained by the DOE approach are analyzed by STATISTICA software. It has been concluded that an increase in the current and pulse duration maximizes both metal removal rate and surface roughness. At the same time, they are minimized by maximizing the pulse pause interval.
The inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlati
... Show MoreNew polydentate ligand namely bis(N-carboxylatoethyl)-0,0`-dipyridinium) L was synthesised from the reaction of 0,0`-dipyridine with ethyl chloropropionate. Polymeric complexes of general formulae [Cr2(L)(N3)0]Cl2.H2O, Na2[Ag2(L)(N3)0].H2O and [M2(L)(N3)0].nH2O, where (M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); (where n = 2;1;1;1;4;1 and 1, respectively)) are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometry complexes. Molecular structure for the complexes has been optimised by CS Chem 3D Ultra Molecular Modelling and Analysis Program and supported a six coordinate geometry.
An experiment was conducted to study the effect of the sprayer type according to the source of power and the size of the spray nozzle concerning the quality of the spray produced and fuel consumption.Two types of sprayers were used: a conventional boom sprayer (S1) and a modified (electrified) boom sprayer (S2), along with three sizes of the XR TeeJet 110 spray nozzle (N). The following technical performance indicators were examined: Density of coverage (drops/cm2) using ImageJ software, a 600dpi business card scanner, specifically the ScanShell 800N by CSSN, Inc, and water-sensitive paper (WSP), rate of spray nozzles discharge (ml/min), and fuel consumption (liters/hectare) using a c
In this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c
... Show MoreA new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13C-NMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex showed square planer.
A new ligand 3-hydroxy-2-(3-(4-nitrobenzoyl) thiouriedo) propanoic acid (NTP) where synthesized by reaction of 4-nitro benzoyl isothiocyanate with serine amino acid. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscpility, conductively measurement, The general formula [M (NTP) 2] where M+2= (Mn, Co, Ni, Cu, Zn, Cd, Hg,), the form of molecular for these complexes as tetrahedral except Cu has square planer.
حضر الليكاند (L) 1-فنيل-3-بردين-2-يل مثيل-ثايويوريا من تفاعل 2-أمينو مثيل بردين مع فنيل ايزوثايوسيانيت وبنسبة 1: 1 وشخص الليكاند بواسطة التحليل الدقيق للعناصر (C, H, N), الأشعة تحت الحمراء، الأشعة فوق البنفسجية–المرئية وطيف الرنين النووي المغناطيسي كما حضرت وشخصت معقدات أملاح بعض ايونات العناصر الثنائية التكافؤ (Co, Ni, Cu, Cd and Hg). استخدمت تقنية الأشعة تحت الحمراء، الأشعه فوق البنفسجية-المرئية, التوصيلية الكهربائية و الا
... Show MoreFive novel nickel, iron, cobalt, copper, and mercury complexes were synthesized from tetraazamacrocyclic Schiff base ligand (L), which were derived from 3-(4-(dimethyl amino) benzylidene) pentane-2,4-dione and 1,2- diaminocyclohexane in a 2:2 molar ratio. Many physico-chemical and spectroscopic techniques, including melting point, 1HNMR, 13CNMR, elemental analysis, molar conductance, magnetic susceptibility, UV-Vis, FT-IR, and thermogravimetric analysis (TGA), were used to characterize the Schiff base ligand and all metal complexes. The octahedral geometry of all the complexes [MLCl2] is confirmed by spectroscopic analyses. All substances' biological properties, such as their in vitro antioxidant activity or level of free radical scavenging
... Show More