Preferred Language
Articles
/
joe-1666
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade the detection rates of current NIDSs, thorough analyses are essential to identify where ML predictors outperform them. The first step is to provide assessment of most used NIDS worldwide, Snort, and comparing its performance with ML classifiers. This paper provides an empirical study to evaluate performance of Snort and four supervised ML classifiers, KNN, Decision Tree, Bayesian net and Naïve Bays against network attacks, probing, Brute force and DoS. By measuring Snort metric, True Alarm Rate, F-measure, Precision and Accuracy and compares them with the same metrics conducted from applying ML algorithms using Weka tool. ML classifiers show an elevated performance with over 99% correctly classified instances for most algorithms, While Snort intrusion detection system shows a degraded classification of about 25% correctly classified instances, hence identifying Snort weaknesses towards certain attack types and giving leads on how to overcome those weaknesses. 

es.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 30 2017
Journal Name
Environmental Earth Sciences
Purification of aqueous solutions from Pb(II) by natural bentonite: an empirical study on chemical adsorption
...Show More Authors

View Publication
Scopus (15)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (122)
Crossref (115)
Scopus Clarivate Crossref
Publication Date
Mon Aug 31 2015
Journal Name
Journal Of Theoretical And Applied Information Technology
EXAM QUESTIONS CLASSIFICATION BASED ON BLOOM’S TAXONOMY COGNITIVE LEVEL USING CLASSIFIERS COMBINATION
...Show More Authors

Preview PDF
Scopus (74)
Scopus
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jun 18 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Effect of Corporate Goverment in Tax Planning: An Empirical Study
...Show More Authors

The purpose of this study is discuss the effect of Corporate Governance in the Tax Planning, has been made in a sample of Iraqi Industrial contribution Companies listed in Iraqi Stock Exchange Market (ISE) , for the period from 2008 to 2012.The study used the" Experimental Research Approach" . Also used the (Modified Jones Model, 1995) in order to measure the corporate governance, to measure the extent of the practice of corporate governance in the samples companies. While it use to measure tax planning, the model that used by studies and researches of tax that adopted in discussions of tax reform, by analyzing the financial statements of companies  to reach  a measurement  for  the two variables of the study.  T

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
The Journal Of Asian Finance, Economics And Business (jafeb)
The Effect of Social Marketing on Customer Behavior: An Empirical Study of Tourism Companies in Baghdad, Iraq
...Show More Authors

Social marketing seeks to develop and integrate marketing concepts with other approaches to social change and aims to influence behaviors that benefit individuals and societies for the social good. The study investigates the type and level of influence of social marketing on customer behavior in tourism companies in Baghdad (Iraq). The sample size of the study is 135 people comprising directors, assistant directors, and marketing staff in tourism companies in Baghdad. A questionnaire was used as a tool to collect data and information, and was prepared by the researcher after it underwent validity, stability, and arbitration tests. The data was analyzed using the statistical program (SPSS v. 25, AMOS v. 23) and statistical methods have been

... Show More
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon May 06 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying

... Show More
Preview PDF
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref