The using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support the weight of vibratory machinery while still being sufficiently moist to enough paste binder dispersion throughout the mass for efficient compaction. Limited studies into the use of RCC with fine recycled aggregate not from pavements are figured. This study aims to see how well-recycled concrete aggregates (RCA) perform in RCC mixtures. Also how well waste concrete could be used as a fine and coarse aggregate substitute in roller-compacted concrete pavement mixes, to create a good concrete mix in both wet and firm phases. The test results of mechanical properties showed 10% RCA is similar to those in the reference mix in the compressive strength, a 100% RCA ratio reduces compressive strength by almost 30%. Comparing Reference mix and Recycled concrete by 30% replacement, the compressive strength drops by just 6% when the RCA ratio is 30%.
Nowadays, many new technologies developed in a lot of countries. These technologies are promising in many areas such as environmental monitoring, precision agriculture as well as in animal production. The purpose of this study was to define a better understanding of how new and advanced technologies affect the agriculture and livestock sector alike. Although agriculture and animal husbandry are among the most important sectors, advanced equipment and information technology cannot be used adequately. This situation leads to low production efficiency. It is also known that there can be a significant difference in temperature between the position of the climate control sensor (room temperature) and the area occupied by the animal. This study e
... Show MoreThe problem in the design of a cam is the analyzing of the mechanisms and dynamic forces that effect on the family of parametric polynomials for describing the motion curve. In present method, two ways have been taken for optimization of the cam size, first the high dynamic loading (such that impact and elastic stress waves propagation) from marine machine tool which translate by the roller follower to the cam surface and varies with time causes large contact loads and second it must include the factors of kinematics features including the acceleration, velocity, boundary condition and the unsymmetrical curvature of the cam profile for the motion curve.
In the theoretical solution
... Show MoreThe present study investigates the use of intensifiers as linguisticdevices employed by Charles Dickens in Hard Times. For ease of analysis, the data are obtained by a rigorous observation of spontaneously occurring intensifiers in the text. The study aims at exploring the pragmatic functions and aesthetic impact of using intensifiers in Hard Times.The current study is mainly descriptive analytical and is based on analyzing and interpreting the use of intensifiers in terms ofHolmes (1984) andCacchiani’smodel (2009). From the findings, the novelist overuses intensifiers to the extent that 280 intensifiers are used in the text. These intensifiers(218) are undistinguished
... Show MoreHydrated lime has been recognized as an effective additive used to improve asphalt concrete properties in pavement applications. However, further work is still needed to quantify the effect of hydrated lime on asphaltic concrete performance under varied weather, temperature, and environmental conditions and in the application of different pavement courses. A research project was conducted using hydrated lime to modify the asphalt concretes used for the applications of wearing (surface), leveling (binder), and base courses. A previous publication reported the experimental study on the resistance to Marshall stability and the volumetric properties, the resilient modulus, and permanent deformation at three different weather temperatures. This
... Show MoreAntibacterial substances belong to a group of compounds that attack dangerous microorganisms. Therefore, killing bacteria or reducing their metabolic activity will lessen their adverse effects on a biological system. They originated from either synthetic materials, microbes, or mold. Many of these medications treat the gram-negative bacteria from the critical precedence group, such as pseudomonas, carbapenem-resistant acinetobacter, and enterobacterales. This study aims to investigate the simultaneous analysis of specific antibacterial spectrophotometrically. The WHO maintains this list of priority infections with antibiotic resistance. Drug combinations in single dosage forms are becoming increasingly popular in the pharmaceutical industry
... Show MoreSelf-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
In this research, the structural behavior of reinforced concrete columns made of normal and hybrid reactive powder concrete (hybrid by steel and polypropylene fibers) subjected to chloride salts with concentration was 8341.6 mg/l. The study consists of two parts, the first one is experimental study and the second one is theoretical analysis. Three main variables were adopted in the experimental program; concrete type, curing type and loading arrangement. Twenty (120x120x1200) mm columns were cast and tested depending on these variables. The samples were reinforced using two different bars; Ø8 for ties and Ø12 with minimum longitudinal reinforcement (0.01Ag). The specimens were divided into two main groups based o
... Show MoreThis study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t