Preferred Language
Articles
/
joe-1652
Recycled Concrete Aggregated for the use in Roller Compacted Concrete: A Literature Review
...Show More Authors

The using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support the weight of vibratory machinery while still being sufficiently moist to enough paste binder dispersion throughout the mass for efficient compaction. Limited studies into the use of RCC with fine recycled aggregate not from pavements are figured. This study aims to see how well-recycled concrete aggregates (RCA) perform in RCC mixtures. Also how well waste concrete could be used as a fine and coarse aggregate substitute in roller-compacted concrete pavement mixes, to create a good concrete mix in both wet and firm phases. The test results of mechanical properties showed 10% RCA is similar to those in the reference mix in the compressive strength, a 100% RCA ratio reduces compressive strength by almost 30%. Comparing Reference mix and Recycled concrete by 30% replacement, the compressive strength drops by just 6% when the RCA ratio is 30%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Open Engineering
Producing low-cost self-consolidation concrete using sustainable material
...Show More Authors
Abstract<p>The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste </p> ... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Investigation of Backfill Compaction Effect on Buried Concrete Pipes
...Show More Authors

The present study deals with the experimental investigation of buried concrete pipes. Concrete pipes are buried in loose and dense conditions of gravelly sand soil and subjected to different surface loadings to study the effects of the backfill compaction on the pipe. The experimental investigation was accomplished using full-scale precast unreinforced concrete pipes with 300 mm internal diameter tested in a laboratory soil box test facility set up for this study. Two loading platforms are used namely, uniform loading platform and patch loading platform. The wheel load was simulated through patch loading platform which have dimensions of 254 mm *508 mm, which is used by AASHTO to model the wheel load of a HS20 truck. The pipe-soil system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 03 2018
Journal Name
Journal Of Engineering
Thermal Properties of Lead-Acid Battery Plastic Lightweight Concrete
...Show More Authors

This study investigates the possibility of using waste plastic as one of the components of expired lead-acid batteries to produce lightweight concrete. Different percentages of lead-acid battery plastic were used in the production of lightweight concrete. The replacements were (70, 80 and 100%) by volume of the fine and coarse aggregate. Results demonstrated that a reduction of approximately 23.6% to 35% in the wet density was observed when replacement of 70% to 100% of the natural aggregate by lead-acid battery plastic. Also, the compressive strength decreased slightly with the increase in plastic content at different curing ages of 7, 28, 60, 90, 120 days. The lowest value of compressive strength was (20.7 MPa) for (wa

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Bond Stresses between Reinforcing Bar and Reactive Powder Concrete
...Show More Authors

A good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationsh

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Feb 21 2025
Journal Name
Applied System Innovation
Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete
...Show More Authors

Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The effect of using magnetized water on the percentage of cement in the Concrete mixture
...Show More Authors

This research studied the effect of magnetized water in concrete preparation and its effect on the presenting of cement in concrete mixtures also to find the ability of reducing the amount of cement in preparing one cubic meter, this is not exceed than 10% in one mixture , The experiments showed the preparation of standard cubes from the concrete which was used two kind of water magnetized water which was prepared by passing the tap water through the systems of different magnetic strength in terms of (6000,9000) Gauss and the ordinary water . The velocity of water through the magnetic field, which gives us the highest value for the compressive strength, was up to 1m/sec. to determine the best magnetic intensity, we examined The comp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Performance of Self-Compacting Concrete Slab with Grinded Local Rocks
...Show More Authors

The effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Apr 07 2009
Journal Name
The 6th Engineering Conference
Bond-Slip Relationship of Reinforcing Steel Bars Embedded in Concrete
...Show More Authors

An experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum

... Show More
Publication Date
Sat Nov 27 2021
Journal Name
International Conference On Fibre-reinforced Polymer (frp) Composites In Civil Engineering
Hybrid Anchors in Reinforced Concrete Slabs Strengthened with FRP Sheets
...Show More Authors

Reinforced concrete (RC) slabs strengthened with carbon fibre reinforced polymer (CFRP) and subjected to flexural actions may experience many types of failure, including FRP debonding, FRP rupture and concrete crushing. Of these different types of failure modes, FRP debonding stands out as the most predominant type of failure because of its dependence on the relatively weak bond interface between the soffit of the RC member and the FRP sheet attached to it. Many anchorage systems have been developed to enhance the performance of strengthened systems, one of which is the hybrid anchor, which combines the effects of patch anchors and spike anchors. Hybrid anchors have shown significant enhancement when used with RC members subjected to shear

... Show More
View Publication
Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Journal Of Engineering
Strengthening and Closing Cracks for Existing reinforced Concrete Girders Using External Post-Tensioning
...Show More Authors