Cost estimation is considered one of the important tasks in the construction projects management. The precise estimation of the construction cost affect on the success and quality of a construction project. Elemental estimation is considered a very important stage to the project team because it represents one of the key project elements. It helps in formulating the basis to strategies and execution plans for construction and engineering. Elemental estimation, which in the early stage, estimates the construction costs depending on . minimum details of the project so that it gives an indication for the initial design stage of a project. This paper studies the factors that affect the elemental cost estimation as well as the relation between these factors using Analytic Hierarchy Process (AHP) method. Final conclusions and recommendations were extracted for better elemental estimation accuracy in project management.
Abstract:-
The title of the thesis (TAQWA "Piety", TAWAKKUL "Trusting” AND NIYYAH "Intention" ARE AMONG THE FACTORS OF ADJUSTMENT) is related to the first legislative source of Islam, the Qur’an, and highlights the positive effects while adhering to the teachings of Islamic Sharia in terms of its importance in building the individual and thus society.
In this study, the researcher follows the objective approach, which includes collecting verses that refer to the issue of piety, trust and intention, and studying the verses objectively according to the sources, language books, ethics, and so on.
I sought to give each topic important headings, then study the topic and clarify it in general, based on narrations an
... Show MoreMedication safety and effectiveness can be improved through interprofessional collaboration. The goals of this study were to measure the degree of physician–pharmacist collaboration within Iraqi governmental healthcare settings and to investigate factors influencing this collaboration.
This cross-sectional study was conducted in Al-Najaf Province using the Collaborative Working Relationship Model and Physician–Pharmacist Collaborative Instrument (PPCI). Four phar
Cardiovascular disorders are refer to the class of diseases that involve the heart or blood vessels (arteries and veins). While the term technically refers to any disease that affects the cardiovascular system. Cholesterol is classified as a sterol (a contraction of steroid and
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreYucca gloriosa Variegata L. is a stemless. The whole plant of Y. gloriosa L. has vast medicinal uses. TheNative Americans and North New Mexico used a tea from the leaves and roots to treat asthma, headache,wound healing. As well as it was being consumed as daily dietary. All part of Y. gloriosa L. is rich in saponinsteroidal glycosides. Saponin extracts are well-known to be highly toxic. Hence, present study was carriedout to investigate the toxicity of saponin and estimate the LD50 value which helps in determining the safedose range for the drug that be used, as well as to determine hematological aspects and examine histologicaleffect. Different concentrations of saponin extract were injected into male mice (10,000, 8000, 6000, 400
... Show MoreABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreIn the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T
... Show MoreThis paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show More