Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods show that extrapolated density measurement used an average for the real density. The gradient of an extrapolated method is much better in shallow depth into the vertical stress calculations. The Miller density method had an excellent fit with the real density in deep depth. It has been crucial to calculate vertical stress for the past 40 years because calculating pore pressure and geomechanical building models have employed vertical stress as input. The strongest predictor of vertical stress may have been bulk density. According to these results, the miller and extrapolated techniques may be the best two methods for determining vertical stress. Still, the gradient of an extrapolated method is much more excellent in shallow depth than the miller method. Extrapolated density approach may produce satisfactory results for vertical stress, while miller values are lower than those obtained by extrapolating. This may be due to the poor gradient of this method at shallow depths. Gardner's approach incorrectly displays minimum values of about 4000 psi at great depths. While other methods provide numbers that are similar because these methods use constant bulk density values that start at the surface and continue to the desired depth, this is incorrect.
Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreVagrancy is global problem, but its geographical distribution differs from one society
to another and from one place to another inside the same society.Till now there isn't a real factor that can explain the phenomenon, spite that economy plays aconstituent and distinguishing part, and spite the fact that Vagrancy is considered a realdeviation that can be compared with criminality level, and cannot be separated from its effecton family, local society and school. In addition to unprecedented work under heavily pressurethat attack to a minimum protection and safety. Vagrant may be a child, a teen, a young, or
even an old man. Vagrancy thus means different people with different ages and not onlyprecisely children. Vagrant is not neces
Our research is based on the fact that the reflection of entertainment programs in Arab satellite channels on the social behavior of Iraqi youth … a field analysis of the Arab ldol program) and that its importance is the entertainment programs and their reflection on social behavior، which occupies
large areas of time from Satellite channels in the form of various episodes and each episode contains several categories، or in the form of templates and forms of various goals and contents، but the problem of
research boils down to (how far iraqi youth follow the entertainment programs in Arab satellite channels and what are the motives for watching the Program Arab ldol )) by For Iraqi youth and what are the positive and negative