Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods show that extrapolated density measurement used an average for the real density. The gradient of an extrapolated method is much better in shallow depth into the vertical stress calculations. The Miller density method had an excellent fit with the real density in deep depth. It has been crucial to calculate vertical stress for the past 40 years because calculating pore pressure and geomechanical building models have employed vertical stress as input. The strongest predictor of vertical stress may have been bulk density. According to these results, the miller and extrapolated techniques may be the best two methods for determining vertical stress. Still, the gradient of an extrapolated method is much more excellent in shallow depth than the miller method. Extrapolated density approach may produce satisfactory results for vertical stress, while miller values are lower than those obtained by extrapolating. This may be due to the poor gradient of this method at shallow depths. Gardner's approach incorrectly displays minimum values of about 4000 psi at great depths. While other methods provide numbers that are similar because these methods use constant bulk density values that start at the surface and continue to the desired depth, this is incorrect.
Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical
... Show More
Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting crude oil viscosity. However, these correlations are limited to predict the oil viscosity at specified conditions. In the present work, an extensive experimental data of oil viscosities collected from different samples of Iraqi oil reservoirs was applied to develop a new correlation to calculate the oil viscosity at various operating conditions either for dead, satura
... Show MoreBackground: Urinary incontinence (UI) is a common disorder that affects women of various ages and impacts all aspects of life. This condition negatively influences quality of life. Fractional CO2 laser (10600nm) is the recent method for treatment of stress urinary incontinence in women. Objectives: The purpose of the study was to evaluate the efficacy and safety of fractional CO2 laser (10600nm) in the treatment of female stress urinary incontinence. Materials & Methods: This study was done from July 2020 to February 2021conducted at the laser institute for postgraduate studies university of Baghdad, patients collected from a private clinic and the Department of
... Show More
Prosthetic hands are compensatory devices for the hand amputees as a result of injury, various accidents or birth deformities, types of prosthetic hand vary depending on the mechanism they operate and how they perform. There are common types in use that are characterized by their complex mechanisms, which are difficult for the amputee to use or exclude use because of their high cost, therefore the aim of this research is to design an artificial hand that is suitable in terms of simplicity of use and low cost and similar to a natural hand with regard to dimensions and shape that operated in the mechanism of links. This research involves Stress and strain analysis of the prosthetic hand and its fingers that modelled from (Petg CR)
... Show MoreThe tests that measure special strength defined by speed contributes a great deal in evaluating the players' weaknesses and strengths so as to aid coaches judge their players according to scientific and objective measurements. The problem of the study lies in answering the following question : is there a test that measures legs' vertical strength defined by speed especially for youth basketball players? The aim of the research was to construct and standardize a test for measuring legs' vertical strength defined by speed in youth basketball. The subjects of the study were 74 youth basketball players from Baghdad. The researchers concluded that the test measures leg's vertical strength defined by speed for youth basketball players as well as
... Show MoreIn this work, an experimental analysis is made to predict the thermal performance of the natural-convection phenomenon from a heated vertical externally finned-tube to surrounding air through an open-ended enclosure. Two different configurations of longitudinal rectangular fin namely, continuous and interrupted are utilized with constant thickness, different numbers, and different heights are extended radially on the outer surface of a heated tube. The tube is heated electrically from inner surface with five varied power input magnitudes. The effect of fins configuration, fins number, fins height, and heat flux of the inner tube surface on the thermal performance of natural c
... Show MoreWith the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev
... Show More