Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
The current study included a review of the registration and description of the Theretra alecto Boi, 1827 (Levant hawk moth), samples were collected from various areas of the Baghdad belt and the provinces of the Middle Euphrates, confirmation in the description was on the most important parts of the body included the head and it's appendages, pronotum, wings as well as male and female genitalia. The morphological characteristics under study were enhanced by illustrations and images. Information on the locations and date of the collection was also confirmed. This study aims to identify the most important characteristics of the diagnosis of the species and the review of appearance variations, especially the analytical style of wings, coupling
... Show MoreActive Learning And Creative Thinking
Pro-inflammatory cytokines play an important role in intercellular communications. In the last two decades, many cytokines have been identified in human milk. These cytokines are variable according to different conditions such as pathogenic infections which strongly stimulated the immune response. The present study aims to determine of IL1β and TNF-α in Toxoplasma gondii-free and infected women in an attempt to clarify the impacts of the infections on cytokines especially in mother's milk. The serum and milk sample were collected from 96 samples (48 for seropositive and 48 for seronegative). To confirm the Toxoplasma gondii infection; enzyme linked immunofluorescence assay (ELIFA) was used to detect anti-Toxoplasma Ig
... Show MorePrimary hypogonadism combined with Müllerian hypoplasia and partial alopecia are common features of this syndrome, which was reported only in four earlier families from areas where consanguineous marriage is prevalent. An autosomal recessive pattern of inheritance was suggested earlier and is supported by this report.
Organizations must interact with the environment around them, so the environment must be suitable for that interaction. These companies are now trying to become Learning Organizations because it try to face that challenges may rise from its environments. The Learning Organization is a concept that is becoming an increasingly widespread philosophy in modern companies, from the largest multinationals to the smallest ventures. What is achieved by this philosophy depends considerably on one's interpretation of it and commitment to it. This study gives a definition that we felt was the true ideology behind the Learning Organization and Group Working. A Learning Organization is one in which people at all levels
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreA fixed firefighting system is a key component of fire safeguarding and reducing fire danger. It is installed as a permanent component in a structure to protect the entire or a portion of the building and its contents. The study aims to review the previous studies that deal with the evaluation of fire safety measures and their use in resolving problems associated with fire threats in buildings. For this reason, a number of previous studies in this field were reviewed compared with the NFPA code. The findings revealed that regulatory developments over the last several decades had created an atmosphere conducive to innovation. This has resulted in a growth in the number of fixed firefighting system types now obtainable. Th
... Show More