Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st
... Show MoreWe report herein an innovative approach to prostate tumor therapy using tumor specific radioactive gold nanoparticles (198Au) functionalized with Mangiferin (MGF). Production and full characterization of MGF-198AuNPs are described. In vivo therapeutic efficacy of MGF-198AuNPs, through intratumoral delivery, in SCID mice bearing prostate tumor xenografts are described. Singular doses of the nano-radiopharmaceutical (MGF-198AuNPs) resulted in over 85% reduction of tumor volume as compared to untreated control groups. The excellent anti-tumor efficacy of MGF-198AuNPs are attributed to the retention of over 90% of the injected dose within tumors for long periods of time. The retention of MGF-198AuNPs is also rationalized in terms of the higher
... Show More
Cressa cretica (Shuwwayl) is a halophytic that belongs to Convolvulaceae, naturally grown in the Middle East including Iraq. Traditionally the plant is used as a paste for sore treatment, also it is used for fever, jaundice, and other illness. Regarding nonclinical use it is used as goat, sheep, and camel feed also as an oil source. Flavonoids including quercetin, kamepferol, apigenin, and their glycosides, phenolic acid as chlorogenic acid, and phytosterols mainly ?–sitosterol were the most important phytochemicals that were detected in this halophyte. Crude ethanolic, methanolic extracts and ethyl acetate fraction of the areal parts were used in clinical studies and demonstrated various effe
... Show MoreObjectives: To review the failure rates of molar tubes and the effect of molar tube base design, adhesive type, and bonding technique on the failure rates of molar tubes. Data: The revolution of molar bonding greatly impacted fixed orthodontic appliance treatment by reducing chair-side time and improving patient comfort. Even with the many advantages of molar bonding, clinicians sometimes hesitate to use molar tubes due to their failure rates. Sources: Internet sources, such as Pubmed and Google Scholar. Study selection: studies testing the bond failure rate of molar tubes. Conclusions: The failure rate of the molar tubes can be reduced and the bond strength of the molar tubes can be improved by changing the design of the molar tube base
... Show MoreWireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreThe emergence of COVID-19 has resulted in an unprecedented escalation in different aspects of human activities, including medical education. Students and educators across academic institutions have confronted various challenges in following the guidelines of protection against the disease on one hand and accomplishing learning curricula on the other hand. In this short view, we presented our experience in implementing e-learning to the undergraduate nursing students during the present COVID-19 pandemic emphasizing the learning content, barriers, and feedback of students and educators. We hope that this view will trigger the preparedness of nursing faculties in Iraq to deal with this new modality of learning and improve it should t
... Show MoreIn recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreAR Al-Heany BSc, PKESMD MSc., PSAANBS PhD, APAANMD MSc., DDV, FICMS., IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2014 - Cited by 14