Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
(Social values) are of great importance in the lives of nations and peoples as they are the frame of reference that governs the relations of members of society to each other and regulates their life affairs.
And the Prophet of Islam (may God’s prayers and peace be upon him) has told about a group of (social values) such as: spreading peace, feeding food, being fair in dealing with others, and clarifying what a Muslim should have towards his Muslim brother from the safety of the chest and refraining from harming him with the tongue and hand, and so on. Ethics and behaviors that are directly and closely related to (social values).
The best book that abounds with these (social valu
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
The compound Fe0.5CoxMg0.95-xO where (x= 0.025, 0.05, 0.075, 0.1) was prepared via the sol-gel technique. The crystalline nature of magnesium oxide was studied by X-ray powder diffraction (XRD) analysis, and the size of the sample crystals, ranging between (16.91-19.62nm), increased, while the lattice constant within the band (0.5337-0.4738 nm) decreased with increasing the cobalt concentration. The morphology of the specimens was studied by scanning electron microscopy (SEM) which shows images forming spherical granules in addition to the presence of interconnected chips. The presence of the elements involved in the super
This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show MoreThis work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+
... Show MorePurpose To extract the lower anterior teeth, the oral surgeon needs to anesthetize the pulpal tissue of the accused tooth and the surrounding tissues. The lingual nerve innervates the lingual soft tissue to the lower teeth, this nerve usually anesthetized alongside the inferior alveolar nerve by a block technique. However, the lingual tissue of the lower anterior teeth usually anesthetized by either infiltration or periodontal ligament injection (PDL) techniques. This study was intended to compare between these two techniques. Methods Forty-eight teeth were extracted from 24 patients. Non-adjacent two lower anterior teeth in the same patient were selected. The lingual soft tissue in one of them was anesthetized by PDL injection technique wh
... Show MoreReuse of spent hydrodesulphurization (HDS) of middle petroleum fractions catalyst CoMo/γAl2O3 was accomplished via removal of coke and contaminants such as vanadium, Iron, Nickel, and sulfur. Three processes were adopted; extraction, leaching, decoking. Soluble and insoluble coke was removed. Leaching step used three different solvents (oxalic acid, ammonium peroxydisulfate and oxalic acid + H2O2) in separate in order to remove contaminant metals (V, S, Ni and Fe).
The effect of soluble coke removal on leaching step was studied. It was found that the removal of soluble coke significantly enhances the leaching of contaminants and barely affected the removal of active metals
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show More